Djamel Lebeche

List of Publications by Citations

Source: https://exaly.com/author-pdf/6181473/djamel-lebeche-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

18 36 1,409 37 g-index h-index citations papers 7.8 4.51 1,753 39 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
36	Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling. <i>Journal of the American Heart Association</i> , 2013 , 2, e000078	6	190
35	FTO-Dependent N-Methyladenosine Regulates Cardiac Function During Remodeling and Repair. <i>Circulation</i> , 2019 , 139, 518-532	16.7	182
34	Role of resistin in cardiac contractility and hypertrophy. <i>Journal of Molecular and Cellular Cardiology</i> , 2008 , 45, 270-80	5.8	109
33	Small Molecular Allosteric Activator of the Sarco/Endoplasmic Reticulum Ca2+-ATPase (SERCA) Attenuates Diabetes and Metabolic Disorders. <i>Journal of Biological Chemistry</i> , 2016 , 291, 5185-98	5.4	97
32	SERCA control of cell death and survival. <i>Cell Calcium</i> , 2018 , 69, 46-61	4	90
31	Resistin promotes cardiac hypertrophy via the AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) and c-Jun N-terminal kinase/insulin receptor substrate 1 (JNK/IRS1) pathways. <i>Journal of Biological Chemistry</i> , 2011 , 286, 18465-73	5.4	79
30	Interplay between impaired calcium regulation and insulin signaling abnormalities in diabetic cardiomyopathy. <i>Nature Clinical Practice Cardiovascular Medicine</i> , 2008 , 5, 715-24		76
29	Empagliflozin Improves Left Ventricular Diastolic Dysfunction in a Genetic Model of Type 2 Diabetes. <i>Cardiovascular Drugs and Therapy</i> , 2017 , 31, 233-246	3.9	72
28	Long-term in vivo resistin overexpression induces myocardial dysfunction and remodeling in rats. <i>Journal of Molecular and Cellular Cardiology</i> , 2011 , 51, 144-55	5.8	57
27	RAF1 mutations in childhood-onset dilated cardiomyopathy. <i>Nature Genetics</i> , 2014 , 46, 635-639	36.3	54
26	Mechanical and metabolic rescue in a type II diabetes model of cardiomyopathy by targeted gene transfer. <i>Molecular Therapy</i> , 2006 , 13, 987-96	11.7	50
25	Multifaceted roles of miR-1s in repressing the fetal gene program in the heart. <i>Cell Research</i> , 2014 , 24, 278-92	24.7	45
24	Diabetic cardiomyopathy: signaling defects and therapeutic approaches. <i>Expert Review of Cardiovascular Therapy</i> , 2010 , 8, 373-91	2.5	45
23	SERCA2 Deficiency Impairs Pancreatic Ecell Function in Response to Diet-Induced Obesity. <i>Diabetes</i> , 2016 , 65, 3039-52	0.9	42
22	Deletion of delta-like 1 homologue accelerates fibroblast-myofibroblast differentiation and induces myocardial fibrosis. <i>European Heart Journal</i> , 2019 , 40, 967-978	9.5	33
21	Na+/Ca2+ exchanger-1 protects against systolic failure in the Akitains2 model of diabetic cardiomyopathy via a CXCR4/NF- B pathway. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2012 , 303, H353-67	5.2	28
20	Gene remodeling in type 2 diabetic cardiomyopathy and its phenotypic rescue with SERCA2a. <i>PLoS ONE</i> , 2009 , 4, e6474	3.7	26

(2013-2013)

Differential patterns of replacement and reactive fibrosis in pressure and volume overload are related to the propensity for ischaemia and involve resistin. <i>Journal of Physiology</i> , 2013 , 591, 5337-55	3.9	23
Molecular Imaging of Apoptosis in Ischemia Reperfusion Injury With Radiolabeled Duramycin Targeting Phosphatidylethanolamine: Effective Target Uptake and Reduced Nontarget Organ Radiation Burden. <i>JACC: Cardiovascular Imaging</i> , 2018 , 11, 1823-1833	8.4	18
Up-regulation of micro-RNA765 in human failing hearts is associated with post-transcriptional regulation of protein phosphatase inhibitor-1 and depressed contractility. <i>European Journal of Heart Failure</i> , 2015 , 17, 782-93	12.3	18
Dominant negative Ras attenuates pathological ventricular remodeling in pressure overload cardiac hypertrophy. <i>Biochimica Et Biophysica Acta - Molecular Cell Research</i> , 2015 , 1853, 2870-84	4.9	17
Leveraging clinical epigenetics in heart failure with preserved ejection fraction: a call for individualized therapies. <i>European Heart Journal</i> , 2021 , 42, 1940-1958	9.5	13
Diabetic cardiomyopathy: is resistin a culprit?. Cardiovascular Diagnosis and Therapy, 2015 , 5, 387-93	2.6	6
Resistin induces cardiac fibroblast-myofibroblast differentiation through JAK/STAT3 and JNK/c-Jun signaling. <i>Pharmacological Research</i> , 2021 , 167, 105414	10.2	6
A role for calcium in resistin transcriptional activation in diabetic hearts. <i>Scientific Reports</i> , 2018 , 8, 156	33 .9	6
Direct reprogramming induces vascular regeneration post muscle ischemic injury. <i>Molecular Therapy</i> , 2021 , 29, 3042-3058	11.7	6
The Probability of Inconstancy in Assessment of Cardiac Function Post-Myocardial Infarction in Mice. <i>Cardiovascular Pharmacology: Open Access</i> , 2016 , 5,		5
Proteomic Architecture of Valvular Extracellular Matrix: FNDC1 and MXRA5 Are New Biomarkers of Aortic Stenosis. <i>JACC Basic To Translational Science</i> , 2021 , 6, 25-39	8.7	5
Adiponectin receptor 1 variants contribute to hypertrophic cardiomyopathy that can be reversed by rapamycin. <i>Science Advances</i> , 2021 , 7,	14.3	4
Boron improves cardiac contractility and fibrotic remodeling following myocardial infarction injury. <i>Scientific Reports</i> , 2020 , 10, 17138	4.9	2
Calcium Signaling in Cardiovascular Physiology and Pathology 2015 , 57-81		1
Impact of Over-Expansion on SAPIEN 3 Transcatheter Heart Valve Pericardial Leaflets. <i>Structural Heart</i> , 2020 , 4, 214-220	0.6	1
Xanthone glucoside 2-ED-glucopyranosyl-1,3,6,7-tetrahydroxy-9H-xanthen-9-one binds to the ATP-binding pocket of glycogen synthase kinase 3land inhibits its activity: implications in prostate cando associated cardiovascular disease risk. <i>Journal of Biomolecular Structure and Dynamics</i> ,	3.6	1
Response to 9 Metabolism reprogramming: new insights of Dlk1 into cardiac fibrosisS <i>European Heart Journal</i> , 2019 , 40, 3575	9.5	О
Targeting Diabetes with a Novel Small Molecule Activator of Sarco/endoplasmic Reticulum	0.9	
	Molecular Imaging of Apoptosis in IschemialReperfusion Injury With Radiolabeled Duramycin Targeting Phosphatidylethanolamine: Effective Target Uptake and Reduced Nontarget Organ Radiation Burden. <i>JACC: Cardiovascular Imaging.</i> 2018, 11, 1823-1833 Up-regulation of micro-RNA765 in human failing hearts is associated with post-transcriptional regulation of protein phosphatase inhibitor-1 and depressed contractility. <i>European Journal of Heart Failure</i> 2015, 17, 782-93 Dominant negative Ras attenuates pathological ventricular remodeling in pressure overload cardiac hypertrophy. <i>Biochimica Et Biophysica Acta - Molecular Cell Research</i> , 2015, 1853, 2870-84 Leveraging clinical epigenetics in heart failure with preserved ejection fraction: a call for individualized therapies. <i>European Heart Journal</i> , 2021, 42, 1940-1958 Diabetic cardiomyopathy: is resistin a culprit?. <i>Cardiovascular Diagnosis and Therapy</i> , 2015, 5, 387-93 Resistin induces cardiac fibroblast-myofibroblast differentiation through JAK/STAT3 and JNK/c-Jun signaling. <i>Pharmacological Research</i> , 2021, 167, 105414 A role for calcium in resistin transcriptional activation in diabetic hearts. <i>Scientific Reports</i> , 2018, 8, 156 Direct reprogramming induces vascular regeneration post muscle ischemic injury. <i>Molecular Therapy</i> , 2021, 29, 3042-3058 The Probability of Inconstancy in Assessment of Cardiac Function Post-Myocardial Infarction in Mice. <i>Cardiovascular Pharmacology: Open Access</i> , 2016, 5, Proteomic Architecture of Valvular Extracellular Matrix: FNDC1 and MXRA5 Are New Biomarkers of Aortic Stenosis. <i>JACC Basic</i> To <i>Translational Science</i> , 2021, 6, 25-39 Adiponectin receptor 1 variants contribute to hypertrophic cardiomyopathy that can be reversed by rapamycin. <i>Science Advances</i> , 2021, 7, Boron improves cardiac contractility and fibrotic remodeling following myocardial infarction injury. <i>Scientific Reports</i> , 2020, 10, 17138 Calcium Signaling in Cardiovascular Physiology and Pathology 2015, 57-81 Impact of Over-Expansion on SAPIEN 3 Tran	related to the propensity for ischaemia and involve resistin. <i>Journal of Physiology</i> , 2013, 591, 5337-55 Molecular Imaging of Apoptosis in Ischemial Reperfusion Injury With Radiolabeled Duramycin Targeting Phosphatidylethanolamine: Effective Target Uptake and Reduced Nontarget Organ/Radiation Burden. <i>JACC: Cardiovascular Imaging</i> , 2018, 11, 1823-1833 Up-regulation of micro-RNA765 in human falling hearts is associated with post-transcriptional regulation of protein phosphatase inhibitor-1 and depressed contractility. <i>European Journal of Heart Failure</i> , 2015, 17, 782-93 Dominant negative Ras attenuates pathological ventricular remodeling in pressure overload cardiac hypertrophy. <i>Biochimica Et Biophysica Acta - Molecular Cell Research</i> , 2015, 1853, 2870-84 Leveraging clinical epigenetics in heart failure with preserved ejection fraction: a call for individualized therapies. <i>European Heart Journal</i> , 2021, 42, 1940-1958 Diabetic cardiomyopathy: is resistin a culprit2. <i>Cardiovascular Diagnosis and Therapy</i> , 2015, 5, 387-93 2.6 Resistin induces cardiac fibroblast-myofibroblast differentiation through JAK/STAT3 and JNK/c-Jun signaling. <i>Pharmacological Research</i> , 2021, 167, 105414 A role for calcium in resistin transcriptional activation in diabetic hearts. <i>Scientific Reports</i> , 2018, 8, 15633-9 Direct reprogramming induces vascular regeneration post muscle ischemic injury. <i>Molecular Therapy</i> , 2021, 29, 3042-3058 The Probability of Inconstancy in Assessment of Cardiac Function Post-Myocardial Infarction in Mice. <i>Cardiovascular Pharmacology: Open Access</i> , 2016, 5, 9 Proteomic Architecture of Valvular Extracellular Matrix: FNDC1 and MXRA5 Are New Biomarkers of Architecture of Valvular Extracellular Matrix: FNDC1 and MXRA5 Are New Biomarkers of Proteomic Architecture of Valvular Extracellular Matrix: FNDC1 and MXRA5 Are New Biomarkers of Proteomic Architecture of Valvular Extracellular Matrix: FNDC1 and MXRA5 Are New Biomarkers of Proteomic Architecture of Valvular Extracellular Matrix: FNDC1 and MXRA5

Obesity Promotes Extracellular Matrix and Metabolic Proteins Network in Aortic Stenosis. Structural Heart, **2021**, 5, 20-20

0.6