Henrikki Liimatainen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6181459/henrikki-liimatainen-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

113
papers4,367
citations38
h-index63
g-index119
ext. papers5,174
ext. citations7.3
avg, IF6.12
L-index

#	Paper	IF	Citations
113	Wood-based composite materials for ultralight lens antennas in 6G systems. <i>Materials Advances</i> , 2022 , 3, 1687-1694	3.3	2
112	Adjustable hydro-thermochromic green nanofoams and films obtained from shapable hybrids of cellulose nanofibrils and ionic liquids for smart packaging. <i>Chemical Engineering Journal</i> , 2022 , 136369	14.7	О
111	Size exclusion and affinity-based removal of nanoparticles with electrospun cellulose acetate membranes infused with functionalized cellulose nanocrystals. <i>Materials and Design</i> , 2022 , 217, 110654	8.1	1
110	Nanostructured and Advanced Designs from Biomass and Mineral Residues: Multifunctional Biopolymer Hydrogels and Hybrid Films Reinforced with Exfoliated Mica Nanosheets. <i>ACS Applied Materials & Mate</i>	9.5	0
109	Hydrophobic modification of nanocellulose and all-cellulose composite films using deep eutectic solvent as a reaction medium. <i>Cellulose</i> , 2021 , 28, 5433	5.5	3
108	One-Step Twin-Screw Extrusion Process to Fibrillate Deep Eutectic Solvent-Treated Wood to Be Used in Wood Fiber-Polypropylene Composites. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 883	- <mark>8</mark> 93	7
107	Fast and Filtration-Free Method to Prepare Lactic Acid-Modified Cellulose Nanopaper. <i>ACS Omega</i> , 2021 , 6, 19038-19044	3.9	O
106	High-performance and sustainable aerosol filters based on hierarchical and crosslinked nanofoams of cellulose nanofibers. <i>Journal of Cleaner Production</i> , 2021 , 310, 127498	10.3	10
105	Energy consumption, physical properties and reinforcing ability of microfibrillated cellulose with high lignin content made from non-delignified spruce and pine sawdust. <i>Industrial Crops and Products</i> , 2021 , 170, 113738	5.9	O
104	Water-resistant nanopaper with tunable water barrier and mechanical properties from assembled complexes of oppositely charged cellulosic nanomaterials. <i>Food Hydrocolloids</i> , 2021 , 120, 106983	10.6	1
103	Comparison of Lignin Fractions Isolated from Wheat Straw Using Alkaline and Acidic Deep Eutectic Solvents. <i>Journal of Agricultural and Food Chemistry</i> , 2020 , 68, 15074-15084	5.7	14
102	Zwitterionic hybrid aerobeads of binary metal organic frameworks and cellulose nanofibers for removal anionic pollutants. <i>Materials and Design</i> , 2020 , 196, 109106	8.1	18
101	Self-assembly of graphene oxide and cellulose nanocrystals into continuous filament via interfacial nanoparticle complexation. <i>Materials and Design</i> , 2020 , 193, 108791	8.1	10
100	Surface Modification of Cured Inorganic Foams with Cationic Cellulose Nanocrystals and Their Use as Reactive Filter Media for Anionic Dye Removal. <i>ACS Applied Materials & Dye Interfaces</i> , 2020 , 12, 2776	43:-277	·57 ⁵
99	Enhancement of the nanofibrillation of birch cellulose pretreated with natural deep eutectic solvent. <i>Industrial Crops and Products</i> , 2020 , 154, 112677	5.9	15
98	Efficient Hydrolysis of Chitin in a Deep Eutectic Solvent Synergism for Production of Chitin Nanocrystals. <i>Nanomaterials</i> , 2020 , 10,	5.4	10
97	Comparison of acidic deep eutectic solvents in production of chitin nanocrystals. <i>Carbohydrate Polymers</i> , 2020 , 236, 116095	10.3	27

(2019-2020)

96	Enhancing packaging board properties using micro- and nanofibers prepared from recycled board. <i>Cellulose</i> , 2020 , 27, 7215-7225	5.5	3
95	High-strength cellulose nanofibers produced via swelling pretreatment based on a choline chloride I midazole deep eutectic solvent. <i>Green Chemistry</i> , 2020 , 22, 1763-1775	10	27
94	Conductive hybrid filaments of carbon nanotubes, chitin nanocrystals and cellulose nanofibers formed by interfacial nanoparticle complexation. <i>Materials and Design</i> , 2020 , 191, 108594	8.1	10
93	Production and characterization of lignin containing nanocellulose from luffa through an acidic deep eutectic solvent treatment and systematic fractionation. <i>Industrial Crops and Products</i> , 2020 , 143, 111913	5.9	48
92	Adsorption of bark derived polyphenols onto functionalized nanocellulose: Equilibrium modeling and kinetics. <i>AICHE Journal</i> , 2020 , 66, e16823	3.6	3
91	A stretchable and compressible ion gel based on a deep eutectic solvent applied as a strain sensor and electrolyte for supercapacitors. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 550-560	7.1	56
90	Interfacial Nanoparticle Complexation of Oppositely Charged Nanocelluloses into Functional Filaments with Conductive, Drug Release, or Antimicrobial Property. <i>ACS Applied Materials & Interfaces</i> , 2020 , 12, 1765-1774	9.5	7
89	Acidic and alkaline deep eutectic solvents in delignification and nanofibrillation of corn stalk, wheat straw, and rapeseed stem residues. <i>Industrial Crops and Products</i> , 2020 , 145, 111956	5.9	36
88	Ultra-low permittivity porous silica-cellulose nanocomposite substrates for 6G telecommunication. <i>Nanotechnology</i> , 2020 , 31, 435203	3.4	10
87	Surface analysis of tissue paper using laser scanning confocal microscopy and micro-computed topography. <i>Cellulose</i> , 2020 , 27, 8989-9003	5.5	2
86	Magnetic superabsorbents based on nanocellulose aerobeads for selective removal of oils and organic solvents. <i>Materials and Design</i> , 2019 , 183, 108115	8.1	21
85	Key role of mild sulfonation of pine sawdust in the production of lignin containing microfibrillated cellulose by ultrafine wet grinding. <i>Industrial Crops and Products</i> , 2019 , 140, 111664	5.9	16
84	Anti-oxidative and UV-absorbing biohybrid film of cellulose nanofibrils and tannin extract. <i>Food Hydrocolloids</i> , 2019 , 92, 208-217	10.6	39
83	Preparation of flame-retardant lignin-containing wood nanofibers using a high-consistency mechano-chemical pretreatment. <i>Chemical Engineering Journal</i> , 2019 , 375, 122050	14.7	32
82	Efficient entrapment and separation of anionic pollutants from aqueous solutions by sequential combination of cellulose nanofibrils and halloysite nanotubes. <i>Chemical Engineering Journal</i> , 2019 , 374, 1013-1024	14.7	11
81	Self-assembled nanofibrils from RGD-functionalized cellulose nanocrystals to improve the performance of PEI/DNA polyplexes. <i>Journal of Colloid and Interface Science</i> , 2019 , 553, 71-82	9.3	9
80	Choline chloride-zinc chloride deep eutectic solvent mediated preparation of partial O-acetylation of chitin nanocrystal in one step reaction. <i>Carbohydrate Polymers</i> , 2019 , 220, 211-218	10.3	24
79	Solid Airllow Temperature Manufacturing of Ultra-Low Permittivity Composite Materials for Future Telecommunication Systems. <i>Frontiers in Materials</i> , 2019 , 6,	4	4

78	Hybrid films of cellulose nanofibrils, chitosan and nanosilica-Structural, thermal, optical, and mechanical properties. <i>Carbohydrate Polymers</i> , 2019 , 218, 87-94	10.3	15
77	Determination of nanoparticle size using Rayleigh approximation and Mie theory. <i>Chemical Engineering Science</i> , 2019 , 201, 222-229	4.4	14
76	New Training to Meet the Global Phosphorus Challenge. <i>Environmental Science & Environmental &</i>	10.3	19
75	Determining the complex refractive index of cellulose nanocrystals by combination of Beer-Lambert and immersion matching methods. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2019 , 235, 1-6	2.1	23
74	Monitoring drying process of varnish by immersion solid matching method. <i>Progress in Organic Coatings</i> , 2019 , 136, 105299	4.8	1
73	Comprehensive NMR Analysis of Pore Structures in Superabsorbing Cellulose Nanofiber Aerogels. Journal of Physical Chemistry C, 2019 , 123, 30986-30995	3.8	11
72	Superabsorbent Aerogels from Cellulose Nanofibril Hydrogels. <i>Polymers and Polymeric Composites</i> , 2019 , 575-600	0.6	
71	Direct sulfation of cellulose fibers using a reactive deep eutectic solvent to produce highly charged cellulose nanofibers. <i>Cellulose</i> , 2019 , 26, 2303-2316	5.5	62
70	Carboxymethyl Chitosan and Its Hydrophobically Modified Derivative as pH-Switchable Emulsifiers. <i>Langmuir</i> , 2018 , 34, 2800-2806	4	44
69	Facile synthesis of palladium and gold nanoparticles by using dialdehyde nanocellulose as template and reducing agent. <i>Carbohydrate Polymers</i> , 2018 , 186, 132-139	10.3	38
68	Effect of Cellulose Nanofibrils on the Bond Strength of Polyvinyl Acetate and Starch Adhesives for Wood. <i>BioResources</i> , 2018 , 13,	1.3	17
67	Recyclable deep eutectic solvent for the production of cationic nanocelluloses. <i>Carbohydrate Polymers</i> , 2018 , 199, 219-227	10.3	55
66	Hierarchical Assembly of Nanocellulose-Based Filaments by Interfacial Complexation. <i>Small</i> , 2018 , 14, e1801937	11	30
65	Effect of plasticizers on the mechanical and thermomechanical properties of cellulose-based biocomposite films. <i>Industrial Crops and Products</i> , 2018 , 122, 513-521	5.9	25
64	Polyion complex hydrogels from chemically modified cellulose nanofibrils: Structure-function relationship and potential for controlled and pH-responsive release of doxorubicin. <i>Acta Biomaterialia</i> , 2018 , 75, 346-357	10.8	31
63	Preparation of cellulose nanocrystals from lignin-rich reject material for oil emulsification in an aqueous environment. <i>Cellulose</i> , 2018 , 25, 293-304	5.5	12
62	Emulsion Stabilization with Functionalized Cellulose Nanoparticles Fabricated Using Deep Eutectic Solvents. <i>Molecules</i> , 2018 , 23,	4.8	18
61	Rapid uptake of pharmaceutical salbutamol from aqueous solutions with anionic cellulose nanofibrils: The importance of pH and colloidal stability in the interaction with ionizable pollutants. <i>Chemical Engineering Journal</i> , 2018 , 350, 378-385	14.7	26

(2016-2018)

60	Superabsorbent Aerogels from Cellulose Nanofibril Hydrogels. <i>Polymers and Polymeric Composites</i> , 2018 , 1-26	0.6	1
59	The pH sensitive properties of carboxymethyl chitosan nanoparticles cross-linked with calcium ions. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 153, 229-236	6	84
58	Sustainable stabilization of oil in water emulsions by cellulose nanocrystals synthesized from deep eutectic solvents. <i>Cellulose</i> , 2017 , 24, 1679-1689	5.5	50
57	Castor oil-based biopolyurethane reinforced with wood microfibers derived from mechanical pulp. <i>Cellulose</i> , 2017 , 24, 2531-2543	5.5	6
56	Nanofibrillation of deep eutectic solvent-treated paper and board cellulose pulps. <i>Carbohydrate Polymers</i> , 2017 , 169, 167-175	10.3	46
55	Cellulose Nanofibrils from Nonderivatizing Urea-Based Deep Eutectic Solvent Pretreatments. <i>ACS Applied Materials & Deep Eutectic Solvent Pretreatments</i> . <i>ACS Applied Materials & Deep Eutectic Solvent Pretreatments</i> . <i>ACS Applied Materials & Deep Eutectic Solvent Pretreatments</i> . <i>ACS Applied Materials & Deep Eutectic Solvent Pretreatments</i> . <i>ACS Applied Materials & Deep Eutectic Solvent Pretreatments</i> . <i>ACS Applied Materials & Deep Eutectic Solvent Pretreatments</i> . <i>ACS Applied Materials & Deep Eutectic Solvent Pretreatments</i> . <i>ACS Applied Materials & Deep Eutectic Solvent Pretreatments</i> . <i>ACS Applied Materials & Deep Eutectic Solvent Pretreatments</i> . <i>ACS Applied Materials & Deep Eutectic Solvent Pretreatments</i> . <i>ACS Applied Materials & Deep Eutectic Solvent Pretreatments</i> . <i>ACS Applied Materials & Deep Eutectic Solvent Pretreatments</i> .	9.5	92
54	Mechanical fabrication of high-strength and redispersible wood nanofibers from unbleached groundwood pulp. <i>Cellulose</i> , 2017 , 24, 4173-4187	5.5	42
53	Hydrophobic, Superabsorbing Aerogels from Choline Chloride-Based Deep Eutectic Solvent Pretreated and Silylated Cellulose Nanofibrils for Selective Oil Removal. <i>ACS Applied Materials & Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS Applied Materials ACS ACS APPLIED ACS </i>	9.5	131
52	Cationic nanocelluloses in dewatering of municipal activated sludge. <i>Journal of Environmental Chemical Engineering</i> , 2017 , 5, 86-92	6.8	25
51	Weighing the factors behind enzymatic hydrolyzability of pretreated lignocellulose. <i>Green Chemistry</i> , 2016 , 18, 1295-1305	10	97
50	Synthesis of imidazolium-crosslinked chitosan aerogel and its prospect as a dye removing adsorbent. <i>RSC Advances</i> , 2016 , 6, 56544-56548	3.7	16
49	Bisphosphonate nanocellulose in the removal of vanadium(V) from water. <i>Cellulose</i> , 2016 , 23, 689-697	5.5	64
48	Alkyl aminated nanocelluloses in selective flotation of aluminium oxide and quartz. <i>Chemical Engineering Science</i> , 2016 , 144, 260-266	4.4	35
47	Nanoparticle emulsifiers based on bifunctionalized cellulose nanocrystals as marine diesel oilwater emulsion stabilizers. <i>Chemical Engineering Journal</i> , 2016 , 288, 312-320	14.7	63
46	Interactions between aminated cellulose nanocrystals and quartz: Adsorption and wettability studies. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2016 , 489, 207-215	5.1	19
45	Amino-modified cellulose nanocrystals with adjustable hydrophobicity from combined regioselective oxidation and reductive amination. <i>Carbohydrate Polymers</i> , 2016 , 136, 581-7	10.3	36
44	Fluting medium strengthened by periodatethlorite oxidized nanofibrillated celluloses. <i>Cellulose</i> , 2016 , 23, 427-437	5.5	15
43	UV-absorbing cellulose nanocrystals as functional reinforcing fillers in polymer nanocomposite films. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 6368-6375	13	60

42	Flocculation of fine hematite and quartz suspensions with anionic cellulose nanofibers. <i>Chemical Engineering Science</i> , 2016 , 148, 256-266	4.4	19
41	Anionically Stabilized Cellulose Nanofibrils through Succinylation Pretreatment in Urea-Lithium Chloride Deep Eutectic Solvent. <i>ChemSusChem</i> , 2016 , 9, 3074-3083	8.3	53
40	Acidic Deep Eutectic Solvents As Hydrolytic Media for Cellulose Nanocrystal Production. <i>Biomacromolecules</i> , 2016 , 17, 3025-32	6.9	140
39	Distinctive green recovery of silver species from modified cellulose: mechanism and spectroscopic studies. <i>International Journal of Biological Macromolecules</i> , 2015 , 76, 109-18	7.9	10
38	Phosphonated nanocelluloses from sequential oxidative-reductive treatment-Physicochemical characteristics and thermal properties. <i>Carbohydrate Polymers</i> , 2015 , 133, 524-32	10.3	38
37	Deep eutectic solvent system based on choline chloride-urea as a pre-treatment for nanofibrillation of wood cellulose. <i>Green Chemistry</i> , 2015 , 17, 3401-3406	10	157
36	High-consistency milling of oxidized cellulose for preparing microfibrillated cellulose films. <i>Cellulose</i> , 2015 , 22, 3151-3160	5.5	12
35	Composite Films of Poly(vinyl alcohol) and Bifunctional Cross-linking Cellulose Nanocrystals. <i>ACS Applied Materials & Description (Composite State of Poly(vinyl alcohol) and Bifunctional Cross-linking Cellulose Nanocrystals. ACS Applied Materials & Description (Composite State of Poly(vinyl alcohol) and Bifunctional Cross-linking Cellulose Nanocrystals. ACS Applied Materials & Description (Composite State of Poly(vinyl alcohol) and Bifunctional Cross-linking Cellulose Nanocrystals. ACS Applied Materials & Description (Composite State of Poly(vinyl alcohol)) and Bifunctional Cross-linking Cellulose Nanocrystals. ACS Applied Materials & Description (Composite State of Poly(vinyl alcohol)) and Bifunctional Cross-linking Cellulose Nanocrystals. ACS Applied Materials & Description (Composite State of Poly(vinyl alcohol)) and Description (Com</i>	9.5	63
34	A cross-linked 2,3-dicarboxylic acid cellulose nanofibril network: A nanoporous thin-film layer with tailored pore size for composite membranes. <i>Separation and Purification Technology</i> , 2015 , 154, 44-50	8.3	6
33	Morphological Analyses of Some Micro- and Nanofibrils from Birch and Wheat Straw Sources. Journal of Wood Chemistry and Technology, 2015 , 35, 102-112	2	7
32	Lead adsorption with sulfonated wheat pulp nanocelluloses. <i>Journal of Water Process Engineering</i> , 2015 , 5, 136-142	6.7	90
31	Nanofibrillation of TEMPO-oxidized bleached hardwood kraft cellulose at high solids content. <i>Holzforschung</i> , 2015 , 69, 1077-1088	2	19
30	Butylamino-functionalized cellulose nanocrystal films: barrier properties and mechanical strength. <i>RSC Advances</i> , 2015 , 5, 15140-15146	3.7	32
29	The role of hornification in the disintegration behaviour of TEMPO-oxidized bleached hardwood fibres in a high-shear homogenizer. <i>Cellulose</i> , 2014 , 21, 1163-1174	5.5	35
28	Fabrication of cationic cellulosic nanofibrils through aqueous quaternization pretreatment and their use in colloid aggregation. <i>Carbohydrate Polymers</i> , 2014 , 103, 187-92	10.3	62
27	Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. <i>Cellulose</i> , 2014 , 21, 1471-1487	5.5	173
26	Biocomposite cellulose-alginate films: promising packaging materials. <i>Food Chemistry</i> , 2014 , 151, 343-5	18.5	140
25	Optimization of dicarboxylic acid cellulose synthesis: reaction stoichiometry and role of hypochlorite scavengers. <i>Carbohydrate Polymers</i> , 2014 , 114, 73-77	10.3	23

(2011-2014)

24	Amphiphilic cellulose nanocrystals from acid-free oxidative treatment: physicochemical characteristics and use as an oil-water stabilizer. <i>Biomacromolecules</i> , 2014 , 15, 2769-75	6.9	89
23	Flocculation of municipal wastewaters with anionic nanocelluloses: Influence of nanocellulose characteristics on floc morphology and strength. <i>Journal of Environmental Chemical Engineering</i> , 2014 , 2, 2005-2012	6.8	35
22	Cationic wood cellulose films with high strength and bacterial anti-adhesive properties. <i>Cellulose</i> , 2014 , 21, 3573-3583	5.5	20
21	Disintegration of periodatethlorite oxidized hardwood pulp fibres to cellulose microfibrils: kinetics and charge threshold. <i>Cellulose</i> , 2014 , 21, 3691-3700	5.5	17
20	Strong, self-standing oxygen barrier films from nanocelluloses modified with regioselective oxidative treatments. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 14384-90	9.5	68
19	Porous thin film barrier layers from 2,3-dicarboxylic acid cellulose nanofibrils for membrane structures. <i>Carbohydrate Polymers</i> , 2014 , 102, 584-9	10.3	27
18	Use of Chemically Modified Nanocelluloses in Flotation of Hematite and Quartz. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 20092-20098	3.9	19
17	Effect of tempo and periodate-chlorite oxidized nanofibrils on ground calcium carbonate flocculation and retention in sheet forming and on the physical properties of sheets. <i>Cellulose</i> , 2013 , 20, 2451-2460	5.5	31
16	Coagulation fl occulation treatment of municipal wastewater based on anionized nanocelluloses. <i>Chemical Engineering Journal</i> , 2013 , 231, 59-67	14.7	161
15	High-strength nanocellulose-talc hybrid barrier films. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2013 , 5, 13412-8	9.5	83
14	Sustainable packaging materials based on wood cellulose. <i>RSC Advances</i> , 2013 , 3, 16590	3.7	34
13	Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment. <i>Cellulose</i> , 2013 , 20, 741-749	5.5	109
12	Regeneration and Recycling of Aqueous Periodate Solution in Dialdehyde Cellulose Production. Journal of Wood Chemistry and Technology, 2013 , 33, 258-266	2	47
11	Effect of carboxymethylcellulose and starch depressants on recovery of filler and fines in tertiary flotation. <i>Tappi Journal</i> , 2013 , 12, 43-50	0.5	2
10	Fragment analysis of different size-reduced lignocellulosic pulps by hydrodynamic fractionation. <i>Cellulose</i> , 2012 , 19, 237-248	5.5	7
9	Use of nanoparticular and soluble anionic celluloses in coagulation-flocculation treatment of kaolin suspension. <i>Water Research</i> , 2012 , 46, 2159-66	12.5	57
8	Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation. <i>Biomacromolecules</i> , 2012 , 13, 1592-7	6.9	227
7	Flocculation performance of a cationic biopolymer derived from a cellulosic source in mild aqueous solution. <i>Bioresource Technology</i> , 2011 , 102, 9626-32	11	52

6	Periodate oxidation of cellulose at elevated temperatures using metal salts as cellulose activators. <i>Carbohydrate Polymers</i> , 2011 , 83, 1293-1297	10.3	178
5	Synthesis of highly cationic water-soluble cellulose derivative and its potential as novel biopolymeric flocculation agent. <i>Carbohydrate Polymers</i> , 2011 , 86, 266-270	10.3	80
4	Dialdehyde cellulose microfibers generated from wood pulp by milling-induced periodate oxidation. <i>Carbohydrate Polymers</i> , 2011 , 86, 260-265	10.3	41
3	Characterization of highly accessible cellulose microfibers generated by wet stirred media milling. <i>Carbohydrate Polymers</i> , 2011 , 83, 2005-2010	10.3	73
2	Hydrodynamic drag and rise velocity of microbubbles in papermaking process waters. <i>Chemical Engineering Journal</i> , 2010 , 162, 956-964	14.7	13
1	Silylated Thiol-Containing Cellulose Nanofibers as a Bio-Based Flocculation Agent for Ultrafine Mineral Particles of Chalcopyrite and Pyrite. <i>Journal of Sustainable Metallurgy</i> ,1	2.7	1