Xiao-Bo Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6181060/publications.pdf Version: 2024-02-01

XIAO-BO SHI

#	Article	IF	CITATIONS
1	UV-Stable and Highly Efficient Perovskite Solar Cells by Employing Wide Band gap NaTaO ₃ as an Electron-Transporting Layer. ACS Applied Materials & Interfaces, 2020, 12, 21772-21778.	8.0	10
2	Optical Energy Losses in Organic–Inorganic Hybrid Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1800667.	7.3	91
3	Enhanced efficiency and stability in organic light-emitting diodes by employing a p-i-n-p structure. Applied Physics Letters, 2016, 109, .	3.3	5
4	Simplified Hybrid White Organic Light‣mitting Diodes with a Mixed Fluorescent Blue Emitting Layer for Exciton Managing and Lifetime Improving. Advanced Optical Materials, 2016, 4, 2051-2056.	7.3	36
5	Highly Efficient Blue Phosphorescent Organic Light-Emitting Diodes Employing a Host Material with Small Bandgap. ACS Applied Materials & Interfaces, 2016, 8, 16186-16191.	8.0	51
6	Doped hole injection bilayers for solution processable blue phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2016, 4, 6570-6574.	5.5	16
7	Conductive Inorganic–Organic Hybrid Distributed Bragg Reflectors. Advanced Materials, 2015, 27, 6696-6701.	21.0	16
8	Controllable Perovskite Crystallization by Water Additive for Highâ€Performance Solar Cells. Advanced Functional Materials, 2015, 25, 6671-6678.	14.9	321
9	Origin of light manipulation in nano-honeycomb structured organic light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 1666-1671.	5.5	18
10	Theoretical model for the external quantum efficiency of organic light-emitting diodes and its experimental validation. Organic Electronics, 2015, 25, 200-205.	2.6	12
11	Improved Hole Interfacial Layer for Planar Perovskite Solar Cells with Efficiency Exceeding 15%. ACS Applied Materials & Interfaces, 2015, 7, 9645-9651.	8.0	114
12	Planar perovskite solar cells with 15.75% power conversion efficiency by cathode and anode interfacial modification. Journal of Materials Chemistry A, 2015, 3, 13533-13539.	10.3	116
13	A stacked Al/Ag anode for short circuit protection in ITO free top-emitting organic light-emitting diodes. RSC Advances, 2015, 5, 96478-96482.	3.6	6
14	Nano-honeycomb structured transparent electrode for enhanced light extraction from organic light-emitting diodes. Applied Physics Letters, 2015, 106, .	3.3	24
15	The effect of molecular geometry on the polymer/fullerene ratio in polymer solar cells. Polymer Chemistry, 2015, 6, 7550-7557.	3.9	5
16	A solution-processed bathocuproine cathode interfacial layer for high-performance bromine–iodine perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17, 26653-26658.	2.8	107
17	Origin of improved stability in green phosphorescent organic light-emitting diodes based on a dibenzofuran/spirobifluorene hybrid host. Applied Physics A: Materials Science and Processing, 2015, 118, 381-387.	2.3	19
18	Highly stable and efficient tandem organic light-emitting devices with intermediate connectors using lithium amide as n-type dopant. Applied Physics Letters, 2014, 105, .	3.3	21

Хіао-Во Ѕні

#	Article	IF	CITATIONS
19	Efficient optical absorption enhancement in organic solar cells by using a 2-dimensional periodic light trapping structure. Applied Physics Letters, 2014, 104, 243904.	3.3	13
20	A Novel Route to Surfaceâ€Enhanced Raman Scattering: Ag Nanoparticles Embedded in the Nanogaps of a Ag Substrate. Advanced Optical Materials, 2014, 2, 588-596.	7.3	27
21	Highly efficient single-layer organic light-emitting devices based on a bipolar pyrazine/carbazole hybrid host material. Journal of Materials Chemistry C, 2014, 2, 2488-2495.	5.5	67
22	Role of hole injection layer in intermediate connector of tandem organic light-emitting devices. Organic Electronics, 2014, 15, 3694-3701.	2.6	19
23	Aqueous solution-processed MoO ₃ thick films as hole injection and short-circuit barrier layer in large-area organic light-emitting devices. Applied Physics Express, 2014, 7, 111601.	2.4	36
24	Lithium Hydride Doped Intermediate Connector for High-Efficiency and Long-Term Stable Tandem Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2014, 6, 18228-18232.	8.0	42
25	Efficient plasmonic photocatalytic activity on silver-nanoparticle-decorated AgVO ₃ nanoribbons. Journal of Materials Chemistry A, 2014, 2, 13226-13231.	10.3	50
26	Improved host material for electrophosphorescence by positional engineering of spirobifluorene–carbazole hybrids. Journal of Materials Chemistry C, 2014, 2, 8736-8744.	5.5	20
27	Highly efficient inverted polymer solar cells using aqueous ammonia processed ZnO as an electron selective layer. Applied Physics A: Materials Science and Processing, 2014, 116, 993-999.	2.3	1
28	Light extraction enhancement from organic light-emitting diodes with randomly scattered surface fixture. Applied Surface Science, 2014, 314, 858-863.	6.1	26
29	Aqueous solution-processed MoO3 as an effective interfacial layer in polymer/fullerene based organic solar cells. Organic Electronics, 2013, 14, 657-664.	2.6	67
30	D–ï€â€"A structured porphyrins for efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 10008.	10.3	64
31	Inverted polymer solar cells integrated with small molecular electron collection layer. Organic Electronics, 2013, 14, 1844-1851.	2.6	14
32	Plasmon Resonance Enhanced Optical Absorption in Inverted Polymer/Fullerene Solar Cells with Metal Nanoparticle-Doped Solution-Processable TiO ₂ Layer. ACS Applied Materials & Interfaces, 2013, 5, 2935-2942.	8.0	111
33	Aqueous Solution-Processed GeO ₂ : An Anode Interfacial Layer for High Performance and Air-Stable Organic Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 10866-10873.	8.0	40
34	Enhancement of electroluminescence efficiency and stability in phosphorescent organic light-emitting diodes with double exciton-blocking layers. Organic Electronics, 2013, 14, 1177-1182.	2.6	35
35	Highly Efficient White Organic Light-Emitting Diodes with Controllable Excitons Behavior by a Mixed Interlayer between Fluorescence Blue and Phosphorescence Yellow-Emitting Layers. International Journal of Photoenergy, 2013, 2013, 1-7.	2.5	7
36	Improved cation valence state in molybdenum oxides by ultraviolet-ozone treatments and its applications in organic light-emitting diodes. Applied Physics Letters, 2013, 102, .	3.3	34

Хіао-Во Ѕні

#	Article	IF	CITATIONS
37	Surface Plasmon Polariton Enhancement in Blue Organic Light-Emitting Diode: Role of Metallic Cathode. Applied Physics Express, 2012, 5, 102102.	2.4	19
38	Enhancement of device efficiency in CuPc/C60 based organic photovoltaic cells by inserting an InCl3 layer. Synthetic Metals, 2012, 162, 2212-2215.	3.9	4
39	Adhesive modification of indium–tin-oxide surface for template attachment for deposition of highly ordered nanostructure arrays. Applied Surface Science, 2012, 258, 8139-8145.	6.1	10
40	Whiteâ€Light Emitting Microtubes of Mixed Organic Chargeâ€Transfer Complexes. Advanced Materials, 2012, 24, 5345-5351.	21.0	201
41	Luminescent properties of Pr3+ doped (Ca, Zn) TiO3: Powders and films. Journal of Alloys and Compounds, 2009, 485, 831-836.	5.5	30