Yoshihiro Kubozono

List of Publications by Citations

 $\textbf{Source:} \ https://exaly.com/author-pdf/6180899/yoshihiro-kubozono-publications-by-citations.pdf$

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

177
papers3,648
citations31
h-index52
g-index183
ext. papers3,937
ext. citations4
avg, IF4.77
L-index

#	Paper	IF	Citations
177	Superconductivity in alkali-metal-doped picene. <i>Nature</i> , 2010 , 464, 76-9	50.4	403
176	Air-assisted high-performance field-effect transistor with thin films of picene. <i>Journal of the American Chemical Society</i> , 2008 , 130, 10470-1	16.4	205
175	Metal-intercalated aromatic hydrocarbons: a new class of carbon-based superconductors. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 16476-93	3.6	183
174	Electric double-layer capacitance between an ionic liquid and few-layer graphene. <i>Scientific Reports</i> , 2013 , 3, 1595	4.9	116
173	Extractions of [email[protected]60, [email[protected]60, [email[protected]60, [email[protected]60, [email[protected]60, [email[protected]60] with Aniline. <i>Journal of the American Chemical Society</i> , 1996 , 118, 6998-6999	16.4	99
172	Trap states and transport characteristics in picene thin film field-effect transistor. <i>Applied Physics Letters</i> , 2009 , 94, 043310	3.4	83
171	Fabrication of ambipolar field-effect transistor device with heterostructure of C60 and pentacene. <i>Applied Physics Letters</i> , 2004 , 85, 4765-4767	3.4	70
170	N-channel field effect transistors with fullerene thin films and their application to a logic gate circuit. <i>Chemical Physics Letters</i> , 2003 , 379, 223-229	2.5	70
169	Transistor Application of Phenacene Molecules and Their Characteristics. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 3806-3819	2.3	63
168	Strong intramolecular electron-phonon coupling in the negatively charged aromatic superconductor picene. <i>Physical Review Letters</i> , 2011 , 107, 077001	7.4	62
167	Accessing surface Brillouin zone and band structure of picene single crystals. <i>Physical Review Letters</i> , 2012 , 108, 226401	7.4	52
166	Synthesis and physical properties of metal-doped picene solids. <i>Physical Review B</i> , 2012 , 86,	3.3	51
165	Transistor application of alkyl-substituted picene. Scientific Reports, 2014, 4, 5048	4.9	49
164	Fabrication and characteristics of C84 fullerene field-effect transistors. <i>Applied Physics Letters</i> , 2004 , 84, 2572-2574	3.4	47
163	Ambipolar operation of fullerene field-effect transistors by semiconductor/metal interface modification. <i>Journal of Applied Physics</i> , 2005 , 97, 104509	2.5	47
162	Interconversion between Polymeric Orange and Monomeric Green Forms of a Schiff Base-Oxovanadium(IV) Complex. <i>Bulletin of the Chemical Society of Japan</i> , 1996 , 69, 3207-3216	5.1	47
161	Superconductivity in (NH3)yCs0.4FeSe. <i>Physical Review B</i> , 2013 , 88,	3.3	45

160	Characteristics of [6]phenacene thin film field-effect transistor. Applied Physics Letters, 2012, 101, 08330	031.4	41	
159	Flexible picene thin film field-effect transistors with parylene gate dielectric and their physical properties. <i>Applied Physics Letters</i> , 2010 , 96, 113305	3.4	40	
158	Ring of C60 polymers formed by electron or hole injection from a scanning tunneling microscope tip. <i>Physical Review Letters</i> , 2006 , 97, 196101	7.4	40	
157	Preparation and Extraction of Ca@C60. <i>Chemistry Letters</i> , 1995 , 24, 457-458	1.7	38	
156	An extended phenacene-type molecule, [8] phenacene: synthesis and transistor application. <i>Scientific Reports</i> , 2014 , 4, 5330	4.9	37	
155	Characteristics of Single Crystal Field-Effect Transistors with a New Type of Aromatic Hydrocarbon, Picene. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 7983-7988	3.8	37	
154	Characteristics of field-effect transistors using the one-dimensional extended hydrocarbon [7]phenacene. <i>Applied Physics Letters</i> , 2011 , 98, 013303	3.4	37	
153	Synthesis and transistor application of the extremely extended phenacene molecule, [9]phenacene. <i>Scientific Reports</i> , 2016 , 6, 21008	4.9	37	
152	Emergence of double-dome superconductivity in ammoniated metal-doped FeSe. <i>Scientific Reports</i> , 2015 , 5, 9477	4.9	35	
151	Facile synthesis of picene from 1,2-di(1-naphthyl)ethane by 9-fluorenone-sensitized photolysis. <i>Organic Letters</i> , 2011 , 13, 2758-61	6.2	33	
150	Observation of zero resistivity in K-doped picene. <i>Physical Review B</i> , 2013 , 87,	3.3	32	
149	Low voltage operation in picene thin film field-effect transistor and its physical characteristics. <i>Applied Physics Letters</i> , 2009 , 95, 183302	3.4	32	
148	Recent progress on carbon-based superconductors. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 3340	19.1 8	31	
147	Structural and electronic properties of Ce@C82. <i>Physical Review B</i> , 2003 , 68,	3.3	31	
146	Characteristics of conjugated hydrocarbon based thin film transistor with ionic liquid gate dielectric. <i>Organic Electronics</i> , 2011 , 12, 2076-2083	3.5	30	
145	High-performance C60 and picene thin film field-effect transistors with conducting polymer electrodes in bottom contact structure. <i>Organic Electronics</i> , 2009 , 10, 432-436	3.5	30	
144	Output Properties of C60Field-Effect Transistors with Au Electrodes Modified by 1-Alkanethiols. Journal of Physical Chemistry C, 2007 , 111, 7211-7217	3.8	30	
143	Synthesis of methoxy-substituted picenes: substitution position effect on their electronic and single-crystal structures. <i>Journal of Organic Chemistry</i> , 2014 , 79, 4973-83	4.2	28	

142	4d>4f dipole resonance of the metal atom encapsulated in a fullerene cage: Ce@C82. <i>Journal of Chemical Physics</i> , 2005 , 122, 064304	3.9	28
141	Phenanthro[1,2-b: 8,7-b]dithiophene: a new picene-type molecule for transistor applications. <i>RSC Advances</i> , 2013 , 3, 19341	3.7	27
140	Fabrication of single crystal field-effect transistors with phenacene-type molecules and their excellent transistor characteristics. <i>Organic Electronics</i> , 2013 , 14, 1673-1682	3.5	27
139	Structural and Electronic Characterizations of Two Isomers of Ce@C82. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 7580-7585	3.4	27
138	Fabrication of high performance/highly functional field-effect transistor devices based on [6] phenacene thin films. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 20611-7	3.6	26
137	Correlation between energy level alignment and device performance in planar heterojunction organic photovoltaics. <i>Organic Electronics</i> , 2013 , 14, 1-7	3.5	26
136	Fabrication and characterization of field-effect transistor device with C2v isomer of Pr@C82. <i>Chemical Physics Letters</i> , 2005 , 409, 187-191	2.5	26
135	Fabrication of a logic gate circuit based on ambipolar field-effect transistors with thin films of C60 and pentacene. <i>Chemical Physics Letters</i> , 2005 , 413, 379-383	2.5	26
134	Pressure-induced superconductivity in AgxBi2⊠Se3. <i>Physical Review B</i> , 2018 , 97,	3.3	25
133	Fabrication of C60 field-effect transistors with polyimide and Ba0.4Sr0.6Ti0.96O3 gate insulators. <i>Applied Physics Letters</i> , 2005 , 87, 143506	3.4	25
132	Ferromagnetism and giant magnetoresistance in the rare-earth fullerides Eu6\(\mathbb{B}\)SrxC60. <i>Physical Review B</i> , 2002 , 65,	3.3	25
131	Transistor application of new picene-type molecules, 2,9-dialkylated phenanthro[1,2-b:8,7-b?]dithiophenes. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 2413-2421	7.1	23
130	Superconductivity in aromatic hydrocarbons. <i>Physica C: Superconductivity and Its Applications</i> , 2015 , 514, 199-205	1.3	23
129	Quantitative analysis of O2 gas sensing characteristics of picene thin film field-effect transistors. <i>Organic Electronics</i> , 2010 , 11, 1394-1398	3.5	23
128	Hole-injection barrier in pentacene field-effect transistor with Au electrodes modified by C16H33SH. <i>Applied Physics Letters</i> , 2007 , 91, 123518	3.4	23
127	Synthesis, structure, and magnetic properties of the fullerene-based ferromagnets Eu3C70 and Eu9C70. <i>Journal of the American Chemical Society</i> , 2003 , 125, 1897-904	16.4	23
126	Efficient Synthetic Photocyclization for Phenacenes Using a Continuous Flow Reactor. <i>Chemistry Letters</i> , 2014 , 43, 994-996	1.7	22
125	Transport properties of field-effect transistor with Langmuir-Blodgett films of C60 dendrimer and estimation of impurity levels. <i>Applied Physics Letters</i> , 2007 , 91, 243515	3.4	22

124	Structure of La2@C80 studied by La K-edge XAFS. Chemical Physics Letters, 2001, 335, 163-169	2.5	22	
123	Emergence of Multiple Superconducting Phases in (NH3)yMxFeSe (M: Na and Li). <i>Scientific Reports</i> , 2015 , 5, 12774	4.9	21	
122	Stabilization of copper metal clusters in mordenite micropores. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1997 , 93, 2125-2130		21	
121	The 4dIf dipole resonance of the Pr atom in an endohedral metallofullerene, Pr@C82. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2008 , 109, 1590-1598	2.1	21	
120	Optimizing Picene Molecular Assembling by Supersonic Molecular Beam Deposition. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 24503-24511	3.8	20	
119	Fabrication of field-effect transistor devices with fullerodendron by solution process. <i>Applied Physics Letters</i> , 2006 , 88, 173509	3.4	20	
118	Photoelectron Holographic Atomic Arrangement Imaging of Cleaved Bimetal-intercalated Graphite Superconductor Surface. <i>Scientific Reports</i> , 2016 , 6, 36258	4.9	18	
117	Systematic Control of Hole-Injection Barrier Height with Electron Acceptors in [7]phenacene Single-Crystal Field-Effect Transistors. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 5284-5293	3.8	18	
116	Extractions of Ca@C60and Sr@C60with Aniline. Chemistry Letters, 1996, 25, 453-454	1.7	18	
115	Isotropic Three-Dimensional Molecular Conductor Based on the Coronene Radical Cation. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 3871-3878	2.3	17	
114	Transition-metal-catalyzed facile access to 3,11-dialkylfulminenes for transistor applications. <i>Organic Letters</i> , 2015 , 17, 708-11	6.2	17	
113	O2-exposure and light-irradiation properties of picene thin film field-effect transistor: A new way toward O2 gas sensor. <i>Sensors and Actuators B: Chemical</i> , 2012 , 171-172, 544-549	8.5	17	
112	High-performance C60 thin-film field-effect transistors with parylene gate insulator. <i>Applied Physics Letters</i> , 2008 , 93, 033316	3.4	16	
111	Output properties of C60 field-effect transistors with different source/drain electrodes. <i>Applied Physics Letters</i> , 2007 , 90, 083503	3.4	16	
110	Transistors fabricated using the single crystals of [8]phenacene. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 7370-7378	7.1	15	
109	Anomalous hysteresis in organic field-effect transistors with SAM-modified electrodes: Structural switching of SAMs by electric field. <i>Organic Electronics</i> , 2010 , 11, 1025-1030	3.5	15	
108	Photofragmentation of C60 in the extreme ultraviolet: statistical analysis on the appearance energies of C60 \square nz+ (n \square , z = 1 \square). <i>Physical Chemistry Chemical Physics</i> , 2005 , 7, 119-123	3.6	15	
107	Photoion yield curves of Dy@C82 in the vacuum UV region. <i>International Journal of Mass Spectrometry</i> , 2005 , 243, 121-125	1.9	15	

106	Fermi level tuning of Ag-doped BiSe topological insulator. Scientific Reports, 2019, 9, 5376	4.9	14
105	Synthesis of the extended phenacene molecules, [10]phenacene and [11]phenacene, and their performance in a field-effect transistor. <i>Scientific Reports</i> , 2019 , 9, 4009	4.9	14
104	Field-effect transistors with thin films of perylene on SiO2 and polyimide gate insulators. <i>Applied Physics Letters</i> , 2006 , 88, 103506	3.4	14
103	Scanning tunneling microscopy/spectroscopy studies of two isomers of Ce@C82 on Si(111)[[7]]) surfaces. <i>Physical Review B</i> , 2004 , 70,	3.3	14
102	Fabrication of field-effect transistor device with higher fullerene, C88. <i>Applied Physics Letters</i> , 2005 , 87, 023501	3.4	14
101	Edge-dependent transport properties in graphene. <i>Nano Letters</i> , 2013 , 13, 1126-30	11.5	13
100	Superconducting phases in (NH3)yMxFeSe1☐Tez (M=Li,Na,andCa). <i>Physical Review B</i> , 2014 , 89,	3.3	13
99	An investigation of correlation between transport characteristics and trap states in n-channel organic field-effect transistors. <i>Applied Physics Letters</i> , 2008 , 92, 163307	3.4	13
98	Enrichment of Ce@C60by HPLC Technique. <i>Chemistry Letters</i> , 1996 , 25, 1061-1062	1.7	13
97	Transport properties of field-effect transistors with thin films of C76 and its electronic structure. <i>Chemical Physics Letters</i> , 2007 , 449, 160-164	2.5	12
96	Improvements in the device characteristics of random-network single-walled carbon nanotube transistors by using high-Igate insulators. <i>Applied Physics Letters</i> , 2006 , 89, 203505	3.4	12
95	Variation of output properties of perylene field-effect transistors by work function of source/drain electrodes. <i>Applied Physics Letters</i> , 2006 , 89, 053508	3.4	12
94	Electronic properties for the C2v and Cs isomers of Pr@C82 studied by Raman, resistivity and scanning tunneling microscopy/spectroscopy. <i>Chemical Physics Letters</i> , 2004 , 395, 78-81	2.5	12
93	An EXAFS Investigation of Local Structure around Rb+ in Aqueous Solution. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1994 , 49, 727-729	1.4	12
92	Induced circular dichroism spectrum of 4,4'-bipyridyl radical cation-Ecyclodextrin inclusion complex. <i>Chemical Physics Letters</i> , 1986 , 131, 201-204	2.5	12
91	Preparation of new superconductors by metal doping of two-dimensional layered materials using ethylenediamine. <i>Physical Review B</i> , 2017 , 96,	3.3	11
90	Structure and electronic properties of Cs3C60 under ambient pressure revealed by X-ray diffraction and ESR. <i>Chemical Physics Letters</i> , 1998 , 291, 31-36	2.5	11
89	Relative partial cross sections for single, double, and triple photoionization of C60 and C70. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 8336-43	2.8	11

(1995-2006)

88	Output properties of C60 field-effect transistor device with Eu source/drain electrodes. <i>Applied Physics Letters</i> , 2006 , 89, 083511	3.4	11
87	Fabrication of new superconducting materials, CaxK1⊠Cy (0 Carbon, 2016 , 100, 641-646	10.4	10
86	Difference in gating and doping effects on the band gap in bilayer graphene. <i>Scientific Reports</i> , 2017 , 7, 11322	4.9	10
85	Carrier Accumulation in Graphene with Electron Donor/Acceptor Molecules. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500073	6.4	10
84	Pressure-induced superconductivity in Bi2\substacksSbxTe3\subs	3.3	9
83	Superconductivity in (NH3)yNaxFeSe0.5Te0.5. <i>Physical Review B</i> , 2016 , 94,	3.3	9
82	Emergence of superconductivity in (NH3)yMxMoSe2 (M: Li, Na and K). Scientific Reports, 2016, 6, 29292	4.9	9
81	Low-voltage organic thin-film transistors based on [n]phenacenes. <i>Organic Electronics</i> , 2019 , 73, 286-29	13.5	9
80	Parity effects in few-layer graphene. <i>Nano Letters</i> , 2013 , 13, 5153-8	11.5	9
79	Nanoscale patterning by manipulation of single C60 molecules with a scanning tunneling microscope. <i>Chemical Physics Letters</i> , 2006 , 420, 82-85	2.5	9
78	Scanning tunneling microscopy of Dy@C82 and Dy@C60 adsorbed on Si(111)[77]) surfaces. <i>Physical Review B</i> , 2004 , 69,	3.3	9
77	Metallic phase in the metal-intercalated higher fullerene Rb8.8(7)C84. <i>Physical Review B</i> , 2005 , 71,	3.3	9
76	A new way to synthesize superconducting metal-intercalated C60 and FeSe. <i>Scientific Reports</i> , 2016 , 6, 18931	4.9	9
75	Transistor Properties of 2,7-Dialkyl-Substituted Phenanthro[2,1-b:7,8-b']dithiophene. <i>Scientific Reports</i> , 2016 , 6, 38535	4.9	9
74	Pressure dependence of superconductivity in low- and high-Tc phases of (NH3)yNaxFeSe. <i>Physical Review B</i> , 2018 , 97,	3.3	8
73	Correlation of superconductivity with crystal structure in (NH3)yCsxFeSe. <i>Physical Review B</i> , 2016 , 93,	3.3	8
72	Synthesis, Extraction and Enrichment of Dy Endohedral Fullerenes. <i>Chemistry Letters</i> , 1997 , 26, 1019-10	12 ₁₀₇	8
71	EXAFS Study on the Phase Transition (Phase Din CH3NH3I. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1995 , 50, 876-880	1.4	8

70	XAFS studies of the oxidation process in RbxCsyC60 (x=3, y=0 and x=2, y=1). <i>Physica C:</i> Superconductivity and Its Applications, 1993 , 217, 21-26	1.3	8
69	Chemical analysis of superconducting phase in K-doped picene. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 444001	1.8	7
68	The ESR spectra of p-benzosemiquinone radical anion included in cyclodextrins. <i>Chemical Physics Letters</i> , 1987 , 137, 467-470	2.5	7
67	Synthesis and characterization of carbazolo[2,1-a]carbazole in thin film and single crystal field-effect transistors. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 7020-7027	7.1	6
66	Fabrication of flexible high-performance organic field-effect transistors using phenacene molecules and their application toward flexible CMOS inverters. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 6022-6033	7.1	6
65	Photophysics of Pentacene-Doped Picene Thin Films. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 16879-	1 6.8 86	6
64	Dynamics of carrier injection in picene thin-film field-effect transistors with an ionic liquid sheet and ionic liquid gel. <i>Organic Electronics</i> , 2014 , 15, 3070-3075	3.5	6
63	XAFS study on metal endohedral fullerenes. <i>Journal of Synchrotron Radiation</i> , 2001 , 8, 551-3	2.4	6
62	The structure and dynamics of 1,3,5-cycloheptatriene and 1,3-cycloheptadiene radical cations in low-temperature matrices. An ESR investigation. <i>Chemical Physics</i> , 1992 , 160, 421-426	2.3	6
61	Charge-Transfer Satellite in Ce@C82Probed by Resonant X-ray Emission Spectroscopy. <i>Journal of the Physical Society of Japan</i> , 2011 , 80, 014702	1.5	5
60	Photoemission study of electronic structures of fullerene and metallofullerene peapods. <i>Physica Status Solidi (B): Basic Research</i> , 2008 , 245, 2025-2028	1.3	5
59	Crystal Structure of Trimethylammonium Perchlorate in Three Solid Phases Including the Ionic Plastic Phase Obtainable above 480 K. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1994 , 49, 723-726	1.4	5
58	Electrostatic electron-doping yields superconductivity in LaOBiS2. <i>Applied Physics Letters</i> , 2016 , 109, 252601	3.4	5
57	Balanced Ambipolar Charge Transport in Phenacene/Perylene Heterojunction-Based Organic Field-Effect Transistors. <i>ACS Applied Materials & Englished Pages</i> , 2021, 13, 8631-8642	9.5	5
56	Superconductivity in 5d transition metal Laves phase SrIr. <i>Journal of Physics Condensed Matter</i> , 2020 , 32, 175703	1.8	4
55	Fabrication of field-effect transistor devices with fullerene related materials. <i>Physica Status Solidi</i> (B): Basic Research, 2006 , 243, 3021-3024	1.3	4
54	Crystal structure and phase transition in tert -butylammonium tetrafluoroborate studied by single crystal X-ray diffraction. <i>Journal of Molecular Structure</i> , 2002 , 606, 273-279	3.4	4
53	Induced Circular Dichroism and Molecular Orientations of ECyclodextrin Inclusion Complexes with 9,10-Anthraquinone and 9,10-Phenanthrenequinone. <i>Bulletin of the Chemical Society of Japan</i> , 1989 62, 3706-3708	5.1	4

(1990-1989)

52	Spectroscopic Investigation of Methyl Viologen Radical Cation Included in Ecyclodextrin. <i>Chemistry Letters</i> , 1989 , 18, 341-344	1.7	4
51	1D and 2D Bi Compounds in Field-Effect Transistors. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500085	6.4	3
50	Preferred location of the Dy ion in the minor isomer of Dy@C82 determined by Dy LIII-edge EXAFS. <i>Chemical Physics Letters</i> , 2004 , 388, 23-26	2.5	3
49	Spectroscopic studies on the cyclodextrin inclusion complexes of aromatic compounds and radicals. <i>Supramolecular Chemistry</i> , 1993 , 2, 277-282	1.8	3
48	ESR Spectra of Para-Substituted Alkyl- and Alkenylbenzene Radical Cations in Halocarbon Matrices. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1992 , 47, 788-796	1.4	3
47	Determination of the deuteron and alkyl-substituent hyperfine coupling constants in nitrobenzene radical anions by formation of cyclodextrin inclusion complexes. <i>Chemical Physics Letters</i> , 1989 , 157, 19-24	2.5	3
46	Electronic structures of Bi2Se3 and AgxBi2Se3 under pressure studied by high-resolution x-ray absorption spectroscopy and density functional theory calculations. <i>Physical Review B</i> , 2020 , 102,	3.3	3
45	Preparation and characterization of superconducting Ba1\(\mathbb{Q}\) Cs x Ti2Sb2O, and its pressure dependence of superconductivity. <i>Japanese Journal of Applied Physics</i> , 2019 , 58, 110603	1.4	3
44	Preparation and characterization of a new graphite superconductor: CaSrC. <i>Scientific Reports</i> , 2017 , 7, 7436	4.9	2
43	Transistor properties of exfoliated single crystals of 2HMo(Se1⊠Tex)2(0№1). <i>Physical Review B</i> , 2017 , 95,	3.3	2
42	Antiferromagnetic resonance in the Mott insulator fcc-Cs3C60. <i>Journal of Physics Condensed Matter</i> , 2013 , 25, 366001	1.8	2
41	Potential barriers to electron carriers in C60 field-effect transistors. <i>Applied Physics Letters</i> , 2008 , 92, 173302	3.4	2
40	Polymer ring formation by electron/hole injection from an STM tip into a C60 close-packed layer. <i>Physica Status Solidi (B): Basic Research</i> , 2006 , 243, 3017-3020	1.3	2
39	XAFS study on a pressure-induced superconductor Cs3C60 under high pressure. <i>Journal of Synchrotron Radiation</i> , 2001 , 8, 725-7	2.4	2
38	XAFS study on RbC60. <i>Journal of Synchrotron Radiation</i> , 1999 , 6, 564-6	2.4	2
37	Temperature dependence of lattice constant and lattice vibration of Rb3C60 crystals. <i>Solid State Communications</i> , 1996 , 100, 153-156	1.6	2
36	Polarized absorption spectra of some aromatic radical anions in stretched polyethylene films. Journal of the Chemical Society, Faraday Transactions 2, 1989 , 85, 1477		2
35	ESR Spectra of the Radical Anions of Nitrobenzene andp-Nitrobenzoic Acid Incorporated into Micelles. <i>Bulletin of the Chemical Society of Japan</i> , 1990 , 63, 3156-3161	5.1	2

34	Structure and Reactions of Radicals Derived from Cyclopentane, Cyclopentenes, and Cyclohexenes in Low-Temperature Matrices. An ESR Study. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1991 , 46, 993-1000	1.4	2
33	Superconductivity in Bi Sb Te Se ($x = 1.0$ and $y = 2.0$) under pressure. <i>Journal of Physics Condensed Matter</i> , 2020 , 32, 465702	1.8	2
32	Facile synthesis of picenes incorporating imide moieties at both edges of the molecule and their application to -channel field-effect transistors <i>RSC Advances</i> , 2020 , 10, 31547-31552	3.7	2
31	Study of the Pressure-Induced Second Superconducting Phase of (NH3)yCs0.4FeSe with Double-Dome Superconductivity. <i>Journal of the Physical Society of Japan</i> , 2019 , 88, 074704	1.5	2
30	Superconducting behavior of a new metal iridate compound, SrIr, under pressure. <i>Journal of Physics Condensed Matter</i> , 2020 , 32, 025704	1.8	2
29	Surface Structure of Organic Semiconductor [n]Phenacene Single Crystals. <i>Journal of the American Chemical Society</i> , 2018 , 140, 14046-14049	16.4	2
28	Superconductivity of topological insulator SbTeSeunder pressure. <i>Journal of Physics Condensed Matter</i> , 2021 , 33,	1.8	2
27	Fabrication of ring oscillators using organic molecules of phenacene and perylenedicarboximide <i>RSC Advances</i> , 2021 , 11, 7538-7551	3.7	2
26	Structure and superconducting properties of multiple phases of (NH) AE FeSe (AE: Ca, Sr and Ba). <i>Journal of Physics Condensed Matter</i> , 2020 , 32, 395704	1.8	1
25	Inhomogeneous superconductivity in thin crystals of FeSe1 \blacksquare Tex (x = 1.0, 0.95, and 0.9). <i>Materials Research Express</i> , 2020 , 7, 036001	1.7	1
24	Transistor Application of Phenacene Molecules and Their Characteristics (Eur. J. Inorg. Chem. 24/2014). European Journal of Inorganic Chemistry, 2014 , 2014, n/a-n/a	2.3	1
23	Electronic phase transition of the valence-fluctuating fulleride Eu2.75C60. <i>Physical Review B</i> , 2011 , 83,	3.3	1
22	Transport properties in C60 field-effect transistor with a single Schottky barrier. <i>Applied Physics Letters</i> , 2008 , 92, 173306	3.4	1
21	Fragmentation Mechanism of Highly Excited C70 Cations in the Extreme Ultraviolet. <i>AIP Conference Proceedings</i> , 2006 ,	O	1
20	Encapsulation of Atom into C60 Cage. <i>Developments in Fullerence Science</i> , 2002 , 253-272		1
19	X-ray diffraction of Na4C60 at low temperature under high pressure. <i>AIP Conference Proceedings</i> , 2000 ,	O	1
18	Study on the physical properties of Na4C60. AIP Conference Proceedings, 2001,	О	1
17	Superconducting behavior of BaTiBiO and its pressure dependence. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 23315-23322	3.6	1

LIST OF PUBLICATIONS

16	Preparation and characterization of a new metal-intercalated graphite superconductor. <i>Materials Research Express</i> , 2019 , 6, 016003	1.7	1
15	Synthesis of [7]phenacene incorporating tetradecyl chains in the axis positions and its application in field-effect transistors. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 7422-7435	7.1	1
14	Superconducting properties of BaBi at ambient and high pressures. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 23014-23023	3.6	1
13	Emergence of a Pressure-Driven Superconducting Phase in BaNaTiSbO. <i>Inorganic Chemistry</i> , 2021 , 60, 3585-3592	5.1	1
12	Superconductivity in a new layered triangular-lattice system Li2IrSi2. <i>New Journal of Physics</i> , 2019 , 21, 093056	2.9	О
11	Evaluation of Effective Field-Effect Mobility in Thin-Film and Single-Crystal Transistors for Revisiting Various Phenacene-Type Molecules <i>ACS Omega</i> , 2022 , 7, 5495-5501	3.9	Ο
10	A new protocol for the preparation of superconducting KBi RSC Advances, 2020, 10, 26686-26692	3.7	0
9	Photochemical synthesis and device application of acene-phenacene hybrid molecules, dibenzo[]phenacenes (= 5-7). <i>Chemical Communications</i> , 2021 , 57, 4768-4771	5.8	O
8	Transistor Application and Intercalation Chemistry of Econjugated Hydrocarbon Molecules 2019 , 229-25	52	
7	C70 close-packed surfaces and single molecule void-formation by local electric field through a scanning tunneling microscope tip. <i>Applied Physics Letters</i> , 2009 , 94, 043107	3.4	
6	Structural Parameters and Internal Rotational Barriers of tert-Butylammonium Ion: AM1 and ab initio Calculations. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 1992 , 47, 1255-	1256	
5	Local Structure of Y1-xCaxBa2Cu4O8Determined by XAFS. <i>Japanese Journal of Applied Physics</i> , 1993 , 32, 587	1.4	
4	Band Engineering of Bilayer Graphene through Combination of Direct Electron Transfer and Electrostatic Gating. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 24001-24008	3.8	
3	Superconducting properties of (NH3) y Li x FeSe0.5Te0.5 under pressure. <i>New Journal of Physics</i> , 2019 , 21, 113010	2.9	
2	Pressure Dependence of Superconducting Behavior of 4d and 5d Transition Metal Compounds CaRh2 and CaIr2. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 20617-20625	3.8	
1	Room-temperature optically detected magnetic resonance of triplet excitons in a pentacene-doped picene single crystal. <i>Journal of Materials Research</i> , 2022 , 37, 1269-1279	2.5	