Christophe Boisson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6180849/publications.pdf Version: 2024-02-01

		117571	168321
117	3,681	34	53
papers	citations	h-index	g-index
127	127	127	2720
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Design of selective divalent chain transfer agents for coordinative chain transfer polymerization of ethylene and its copolymerization with butadiene. Polymer Chemistry, 2022, 13, 1970-1977.	1.9	11
2	Switch from Anionic Polymerization to Coordinative Chain Transfer Polymerization: A Valuable Strategy to Make Olefin Block Copolymers. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
3	Switch from Anionic Polymerization to Coordinative Chain Transfer Polymerization: A Valuable Strategy to Make Olefin Block Copolymers. Angewandte Chemie, 2022, 134, .	1.6	4
4	Cationic Phenoxyimine Complexes of Yttrium: Synthesis, Characterization, and Living Polymerization of Isoprene. Organometallics, 2022, 41, 2106-2118.	1.1	3
5	Thermomorphic Polyethyleneâ€Supported Organocatalysts for the Valorization of Vegetable Oils and CO ₂ . Advanced Sustainable Systems, 2021, 5, 2000218.	2.7	11
6	Organocatalytic Synthesis of Substituted Vinylene Carbonates. Advanced Synthesis and Catalysis, 2021, 363, 5129-5137.	2.1	5
7	Monocationic Bis-Alkyl and Bis-Allyl Yttrium Complexes: Synthesis, ⁸⁹ Y NMR Characterization, Ethylene or Isoprene Polymerization, and Modeling. Organometallics, 2021, 40, 218-230.	1.1	8
8	Titanium-based phenoxy-imine catalyst for selective ethylene trimerization: effect of temperature on the activity, selectivity and properties of polymeric side products. Catalysis Science and Technology, 2020, 10, 1602-1608.	2.1	6
9	Ene/Diene Copolymerization Catalyzed by Cationic Sc and Gd d ⁰ Metal Complexes: Speciation, Ion Pairing, and Selectivity from a Computational Perspective. ACS Catalysis, 2020, 10, 12359-12369.	5.5	6
10	One-pot syntheses of heterotelechelic α-vinyl,ï‰-methoxysilane polyethylenes and condensation into comb-like and star-like polymers with high chain end functionality. Polymer Chemistry, 2020, 11, 3884-3891.	1.9	11
11	Engineering Poly(ethylene-co-1-butene) through Modulating the Active Species by Alkylaluminum. ACS Catalysis, 2020, 10, 7216-7229.	5.5	11
12	A Thermomorphic Polyethyleneâ€6upported Imidazolium Salt for the Fixation of CO ₂ into Cyclic Carbonates. Advanced Synthesis and Catalysis, 2020, 362, 1696-1705.	2.1	15
13	An Advanced Technique for Linear Lowâ€Density Polyethylene Composition Determination: TGA–IST16–GC–MS Coupling. Macromolecular Chemistry and Physics, 2019, 220, 1900162.	1.1	9
14	Polyethylene Aerogels with Combined Physical and Chemical Crosslinking: Improved Mechanical Resilience and Shapeâ€Memory Properties. Angewandte Chemie - International Edition, 2019, 58, 15883-15889.	7.2	24
15	Polyethylene Aerogels with Combined Physical and Chemical Crosslinking: Improved Mechanical Resilience and Shapeâ€Memory Properties. Angewandte Chemie, 2019, 131, 16030-16036.	1.6	3
16	Identification of a Transient but Key Motif in the Living Coordinative Chain Transfer Cyclocopolymerization of Ethylene with Butadiene. ACS Catalysis, 2019, 9, 9298-9309.	5.5	14
17	Molecular Dynamics Simulation of Ethylene/Hexene Copolymer Adsorption onto Graphene: New Insight into Thermal Gradient Interaction Chromatography. Macromolecular Chemistry and Physics, 2019, 220, 1800496.	1.1	9
18	Alkynyl Ether Labeling: A Selective and Efficient Approach to Count Active Sites of Olefin Polymerization Catalysts. ACS Catalysis, 2019, 9, 3098-3103.	5.5	15

#	Article	IF	CITATIONS
19	Chemical Composition of Hexeneâ€Based Linear Lowâ€Đensity Polyethylene by Infrared Spectroscopy and Chemometrics. Macromolecular Chemistry and Physics, 2019, 220, 1900376.	1.1	1
20	Rapid Determination of the Chemical Composition of Ethylene/Butadiene Copolymers Using FTIR Spectroscopy and Chemometrics. Macromolecular Chemistry and Physics, 2018, 219, 1700609.	1.1	3
21	Structural and Mechanical Properties of Supramolecular Polyethylenes. Macromolecules, 2018, 51, 2630-2640.	2.2	28
22	The effect of aluminum alkyls and <scp>BHT</scp> â€ <scp>H</scp> on reaction kinetics of silica supported metallocenes and polymer properties in slurry phase ethylene polymerization. Journal of Applied Polymer Science, 2018, 135, 45670.	1.3	2
23	Coordinative chain transfer copolymerization of ethylene and styrene using an <i>ansa</i> -bis(fluorenyl) neodymium complex and dialkylmagnesium. Polymer Chemistry, 2018, 9, 3262-3271.	1.9	2
24	Monofunctional and Telechelic Polyethylenes Carrying Phosphonic Acid End Groups. Macromolecular Rapid Communications, 2018, 39, e1800154.	2.0	12
25	Dialkenylmagnesium Compounds in Coordinative Chain Transfer Polymerization of Ethylene. Reversible Chain Transfer Agents and Tools To Probe Catalyst Selectivities toward Ring Formation. Organometallics, 2018, 37, 1546-1554.	1.1	16
26	Light induced polyethylene ligation. Polymer Chemistry, 2018, 9, 3633-3637.	1.9	3
27	Free Radical Copolymerization of Ethylene with Vinyl Acetate under Mild Conditions. Macromolecules, 2017, 50, 3516-3523.	2.2	31
28	Experimental proof of the existence of massâ€ŧransfer resistance during early stages of ethylene polymerization with silica supported metallocene/MAO catalysts. AICHE Journal, 2017, 63, 4476-4490.	1.8	19
29	Avoiding leaching of silica supported metallocenes in slurry phase ethylene homopolymerization. Reaction Chemistry and Engineering, 2017, 2, 521-530.	1.9	10
30	Amino End-Functionalized Polyethylenes and Corresponding Telechelics by Coordinative Chain Transfer Polymerization. Macromolecules, 2017, 50, 8372-8377.	2.2	31
31	Preparation of monopodal and bipodal aluminum surface species by selective protonolysis of highly reactive [AlH3(NMe2Et)] on silica. Dalton Transactions, 2017, 46, 11547-11551.	1.6	3
32	A new straightforward method for measuring xylene soluble for high impact polypropylene. Canadian Journal of Chemical Engineering, 2017, 95, 939-943.	0.9	6
33	Polyolefins, a Success Story. Polymers, 2017, 9, 185.	2.0	156
34	Active and Recyclable Polyethyleneâ€5upported Iridiumâ€(N―Heterocyclic Carbene) Catalyst for Hydrogen/Deuterium Exchange Reactions. Advanced Synthesis and Catalysis, 2016, 358, 2317-2323.	2.1	10
35	Silica/Methylaluminoxane/(nâ€BuCp) ₂ ZrCl ₂ : Effect of Silica Dehydroxylation Temperature on HDPE Morphology. Macromolecular Symposia, 2016, 360, 61-68.	0.4	3
36	Ethylene–Butadiene Copolymerization by Neodymocene Complexes: A Ligand Structure/Activity/Polymer Microstructure Relationship Based on DFT Calculations. ACS Catalysis, 2016, 6, 1028-1036.	5.5	37

#	Article	IF	CITATIONS
37	The design of a bipodal bis(pentafluorophenoxy)aluminate supported on silica as an activator for ethylene polymerization using surface organometallic chemistry. Chemical Communications, 2016, 52, 4776-4779.	2.2	21
38	Silica/MAO/(n-BuCp) ₂ ZrCl ₂ catalyst: effect of support dehydroxylation temperature on the grafting of MAO and ethylene polymerization. Catalysis Science and Technology, 2016, 6, 2962-2974.	2.1	44
39	Deciphering the Mechanism of Coordinative Chain Transfer Polymerization of Ethylene Using Neodymocene Catalysts and Dialkylmagnesium. ACS Catalysis, 2016, 6, 851-860.	5.5	50
40	Polyboramines for Hydrogen Release: Polymers Containing Lewis Pairs in their Backbone. Angewandte Chemie - International Edition, 2015, 54, 15744-15749.	7.2	38
41	Synthesis of Block Copolymers Based on Polyethylene by Thermally Induced Controlled Radical Polymerization Using Mn ₂ (CO) ₁₀ . Macromolecular Chemistry and Physics, 2015, 216, 958-963.	1.1	30
42	Toward Anisotropic Hybrid Materials: Directional Crystallization of Amphiphilic Polyoxazoline-Based Triblock Terpolymers. ACS Nano, 2015, 9, 10085-10098.	7.3	29
43	Divinylâ€Endâ€Functionalized Polyethylenes: Ready Access to a Range of Telechelic Polyethylenes through Thiol–Ene Reactions. Angewandte Chemie - International Edition, 2015, 54, 4631-4635.	7.2	49
44	Characterization of the Chemical Composition Distribution of Ethylene/1â€Alkene Copolymers with HPLC and CRYSTAF—Comparison of Results. Macromolecular Chemistry and Physics, 2015, 216, 721-732.	1.1	20
45	Microphase Separation and Crystallization in H-Bonding End-Functionalized Polyethylenes. Macromolecules, 2015, 48, 3257-3268.	2.2	32
46	Well-Defined Silica-Supported Zirconium-Benzyl Cationic Species: Improved Heterogenization of Single-Site Polymerization Catalysts. European Journal of Inorganic Chemistry, 2014, 2014, 888-895.	1.0	18
47	Activation and Deactivation of the Polymerization of Ethylene over <i>rac</i> â€EtInd ₂ ZrCl ₂ and (<i>n</i> BuCp) ₂ ZrCl ₂ on an Activating Silica Support. Macromolecular Chemistry and Physics, 2014, 215, 1358-1369.	1.1	11
48	Catalytic olefin polymerisation at short times: Studies using specially adapted reactors. Canadian Journal of Chemical Engineering, 2013, 91, 669-686.	0.9	34
49	Borate and MAO Free Activating Supports for Metallocene Complexes. ACS Catalysis, 2013, 3, 2288-2293.	5.5	21
50	Site count: is a high-pressure quenched-flow reactor suitable for kinetic studies of molecular catalysts in ethylene polymerization?. Dalton Transactions, 2013, 42, 9049.	1.6	7
51	Small Changes Have Consequences: Lessons from Tetrabenzyltitanium and â€zirconium Surface Organometallic Chemistry. Chemistry - A European Journal, 2013, 19, 964-973.	1.7	24
52	Grafting of polyethylene onto graphite oxide sheets: a comparison of two routes. Polymer Chemistry, 2013, 4, 2828.	1.9	37
53	Telechelic Polyethylene from Catalyzed Chainâ€Growth Polymerization. Angewandte Chemie - International Edition, 2013, 52, 3438-3441.	7.2	71
54	Di- and Triblock Copolymers Based on Polyethylene and Polyisobutene Blocks. Toward New Thermoplastic Elastomers. Macromolecules, 2013, 46, 3417-3424.	2.2	38

CHRISTOPHE BOISSON

#	Article	IF	CITATIONS
55	Enhanced Spin Capturing Polymerization of Ethylene. Macromolecules, 2013, 46, 29-36.	2.2	13
56	Specialised tools for a better comprehension of olefin polymerisation reactors. Macromolecular Symposia, 2013, 333, 233-241.	0.4	2
57	Homogeneous Copolymers of Ethylene with αâ€olefins Synthesized with Metallocene Catalysts and Their Use as Standards for <scp>TREF</scp> Calibration. Macromolecular Symposia, 2013, 330, 42-52.	0.4	14
58	Synthesis of copolymers of ethylene and (meth)acrylates or styrene by an original dual radical/catalytic mechanism. Pure and Applied Chemistry, 2012, 84, 2113-2120.	0.9	8
59	Polyethylene end functionalization using thia-Michael addition chemistry. Polymer Chemistry, 2012, 3, 2383.	1.9	23
60	Completely Miscible Polyethylene Nanocomposites. Journal of the American Chemical Society, 2012, 134, 18157-18160.	6.6	60
61	Poly(ethylene) brushes grafted to silicon substrates. Polymer Chemistry, 2012, 3, 1838-1845.	1.9	31
62	New insights on Ni-based catalysts for stereospecific polymerization of butadiene. Polymer Chemistry, 2012, 3, 1490.	1.9	8
63	Polyethylenes bearing a terminal porphyrin group. Chemical Communications, 2011, 47, 7057.	2.2	26
64	Homo- and Copolymerizations of (Meth)Acrylates with Olefins (Styrene, Ethylene) Using Neutral Nickel Complexes: A Dual Radical/Catalytic Pathway. Macromolecules, 2011, 44, 3293-3301.	2.2	52
65	Polyethylene End Functionalization Using Radical-Mediated Thiolâ^'Ene Chemistry: Use of Polyethylenes Containing Alkene End Functionality. Macromolecules, 2011, 44, 3381-3387.	2.2	35
66	Unusual activation by solvent of the ethylene free radical polymerization. Polymer Chemistry, 2011, 2, 2328.	1.9	31
67	Wellâ€defined polyolefin/poly(ε aprolactone) diblock copolymers: New synthetic strategy and application. Journal of Polymer Science Part A, 2011, 49, 511-517.	2.5	50
68	Block copolymers via macromercaptan initiated ring opening polymerization. Journal of Polymer Science Part A, 2011, 49, 803-813.	2.5	19
69	Synthesis of polyethyleneâ€grafted multiwalled carbon nanotubes via a peroxideâ€initiating radical coupling reaction and by using wellâ€defined TEMPO and thiol endâ€functionalized polyethylenes. Journal of Polymer Science Part A, 2011, 49, 957-965.	2.5	17
70	Synthesis of copolyamides based on PA 66 bearing lithium sulfonate groups and having unique thermal properties. Journal of Polymer Science Part A, 2011, 49, 5057-5062.	2.5	0
71	Synthesis of Cyclopentadienyl Capped Polyethylene and Subsequent Block Copolymer Formation Via Hetero Dielsâ€Alder (HDA) Chemistry. Macromolecular Rapid Communications, 2011, 32, 1447-1453.	2.0	26
72	Aqueous Dispersions of Nonspherical Polyethylene Nanoparticles from Freeâ€Radical Polymerization under Mild Conditions. Angewandte Chemie - International Edition, 2010, 49, 6810-6812.	7.2	18

Christophe Boisson

#	Article	IF	CITATIONS
73	Role of Silica Properties in the Polymerisation of Ethylene Using Supported Metallocene Catalysts. Macromolecular Chemistry and Physics, 2010, 211, 91-102.	1.1	30
74	A systematic study of the kinetics of polymerisation of ethylene using supported metallocene catalysts. Chemical Engineering Journal, 2010, 157, 194-203.	6.6	10
75	Characterization of Ethylene methyl methacrylate and Ethylene butylacrylate Copolymers with Interactive Liquid Chromatography. Macromolecular Symposia, 2010, 298, 191-199.	0.4	9
76	A RAFT Analogue Olefin Polymerization Technique Using Coordination Chemistry. Australian Journal of Chemistry, 2010, 63, 1155.	0.5	32
77	Neutral ansa-bis(fluorenyl)silane neodymium borohydrides: synthesis, structural study and behaviour as catalysts in butadiene–ethylene copolymerisation. New Journal of Chemistry, 2010, 34, 2290.	1.4	19
78	Catalyzed chain growth (CCG) on a main group metal: an efficient tool to functionalize polyethylene. Polymer Chemistry, 2010, 1, 793.	1.9	112
79	Thiol-End-Functionalized Polyethylenes. Macromolecules, 2010, 43, 7495-7503.	2.2	36
80	Supercritical behavior in free radical polymerization of ethylene in the medium pressure range. Physical Chemistry Chemical Physics, 2010, 12, 11665.	1.3	17
81	Free Ethylene Radical Polymerization under Mild Conditions: The Impact of the Solvent. Macromolecules, 2009, 42, 7279-7281.	2.2	29
82	<i>ansa</i> -Bis(fluorenyl)neodymium Catalysts for Cyclocopolymerization of Ethylene with Butadiene. Macromolecules, 2009, 42, 3774-3779.	2.2	38
83	Synthesis of dihydroxy poly(ethylene-co-butadiene) via metathetical depolymerization: Kinetic and mechanistic aspects. Polymer, 2008, 49, 4935-4941.	1.8	27
84	Polyethylene Building Blocks by Catalyzed Chain Growth and Efficient End Functionalization Strategies, Including Click Chemistry. Angewandte Chemie - International Edition, 2008, 47, 9311-9313.	7.2	121
85	Synthesis of well-defined polymer architectures by successive catalytic olefin polymerization and living/controlled polymerization reactions. Progress in Polymer Science, 2007, 32, 419-454.	11.8	119
86	Catalyzed chain growth of polyethylene on magnesium for the synthesis of macroalkoxyamines: Application to the production of block copolymers using controlled radical polymerization. Journal of Polymer Science Part A, 2007, 45, 2705-2718.	2.5	44
87	Lanthanidocene Borohydrides: Alternative Precursors for Olefin and Conjugated Diene Polymerization Catalysts. Macromolecular Chemistry and Physics, 2006, 207, 1727-1731.	1.1	27
88	New Functional Polyolefins: Towards a Bridge Between Catalytic and RAFT Polymerizations?. Macromolecular Rapid Communications, 2006, 27, 173-181.	2.0	56
89	Alternating Copolymerization of Ethylene and Butadiene with a Neodymocene Catalyst. Angewandte Chemie - International Edition, 2005, 44, 2593-2596.	7.2	62
90	Advances and Limits in Copolymerization of Olefins with Conjugated Dienes. Macromolecular Symposia, 2005, 226, 17-24.	0.4	24

CHRISTOPHE BOISSON

#	Article	IF	CITATIONS
91	New Nanocomposite Materials Reinforced with Cellulose Whiskers in Atactic Polypropylene:Â Effect of Surface and Dispersion Characteristics. Biomacromolecules, 2005, 6, 2732-2739.	2.6	369
92	Use of a Lewis Acid Surfactant Combined Catalyst in Cationic Polymerization in Miniemulsion:Â Apparent and Hidden Initiators. Macromolecules, 2004, 37, 3136-3142.	2.2	46
93	Polymerization of butadiene and copolymerization of butadiene with styrene using neodymium amide catalysts. Polymer International, 2004, 53, 576-581.	1.6	50
94	Evidence of Intramolecular Cyclization in Copolymerization of Ethylene with 1,3-Butadiene: Thermal Properties of the Resulting Copolymers. Macromolecular Chemistry and Physics, 2004, 205, 737-742.	1.1	32
95	Highly Active Yttrium and Lanthanide Catalysts for Polymerization of Isobutene. Macromolecular Rapid Communications, 2004, 25, 1953-1957.	2.0	17
96	Synthesis and Characterization of Macroalkoxyamines Based on Polyethylene. Macromolecules, 2004, 37, 3540-3542.	2.2	48
97	Lanthanidocene Catalysts for the Homo- and Copolymerization of Ethylene with Butadiene. Macromolecular Chemistry and Physics, 2003, 204, 1747-1754.	1.1	52
98	Synthesis of Silica-Supported Metallocene Catalysts for Olefin Polymerization. Macromolecular Chemistry and Physics, 2002, 203, 2501-2507.	1.1	17
99	Investigation of Ethylene/Butadiene Copolymers Microstructure by 1H and 13C NMR. Macromolecules, 2001, 34, 6304-6311.	2.2	50
100	Heterogeneous Ziegler-Natta Catalyst Based on Neodymium for the Stereospecific Polymerization of Butadiene. Macromolecular Rapid Communications, 2001, 22, 1411-1414.	2.0	33
101	Homogeneous and Heterogeneous Polymerization ofÉ›-Caprolactone by Neodymium Alkoxides Prepared In Situ. Macromolecular Chemistry and Physics, 2001, 202, 1156-1160.	1.1	41
102	Homogeneous and Heterogeneous Polymerization of -Caprolactone by Neodymium Alkoxides Prepared In Situ. Macromolecular Chemistry and Physics, 2001, 202, 1156-1160.	1.1	1
103	Nitrogen-containing lanthanide complexes: initiators or real catalysts for the ε-caprolactone polymerisation?. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 2000, 3, 631-638.	0.1	2
104	First Synthesis of Poly(ethene-co-1,3-butadiene) with Neodymocene Catalysts. Macromolecules, 2000, 33, 8521-8523.	2.2	71
105	Polymerization of butadiene with a new catalyst based on a neodymium amide precursor. Macromolecular Chemistry and Physics, 1999, 200, 1163-1166.	1.1	48
106	Uranium amides as precursors to cationic and/or pentavalent compounds. Journal of Alloys and Compounds, 1998, 271-273, 144-149.	2.8	11
107	Influence of the Nature of the Ligands on the Electronic Ground State of Organouranium(V) Compounds, Studied by Electron Paramagnetic Resonance. Inorganic Chemistry, 1997, 36, 5931-5936.	1.9	32
108	Synthesis of cationic Group 4 metal compounds by protonolysis of amide precursors: crystal structure of [Ti(NMe2)3(NC5H5)2][BPh4]. Journal of Organometallic Chemistry, 1997, 531, 115-119.	0.8	18

#	Article	IF	CITATIONS
109	Synthesis and crystal structure of [U(ÎC5Me5)2(OC4H8)2][BPh4], the first cationic cyclopentadienyl compound of uranium(III). Journal of Organometallic Chemistry, 1997, 533, 7-11.	0.8	36
110	Reactivity of the cationic uranium amide compound [U(η-C5Me5)2(NMe2)(OC4H8)][BPh4]. Journal of Organometallic Chemistry, 1997, 548, 9-16.	0.8	24
111	Novel ring-opening reaction of tetrahydrofuran promoted by a cationic uranium amide compound. Chemical Communications, 1996, , 2129.	2.2	28
112	Monocyclooctatetraene uranium amide compounds in the +4 and +5 oxidation states. Journal of the Chemical Society Dalton Transactions, 1996, , 947.	1.1	36
113			