
Fuqiang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6180673/publications.pdf Version: 2024-02-01

FUOLANC YANC

#	Article	IF	CITATIONS
1	Estimation of China's Contribution to Global Greening over the Past Three Decades. Land, 2022, 11, 393.	2.9	1
2	Overestimated Terrestrial Carbon Uptake in the Future Owing to the Lack of Spatial Variations CO ₂ in an Earth System Model. Earth's Future, 2022, 10, .	6.3	3
3	China's Interannual Variability of Net Primary Production Is Dominated by the Central China Region. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033362.	3.3	8
4	Response of Growing Season Gross Primary Production to El Niño in Different Phases of the Pacific Decadal Oscillation over Eastern China Based on Bayesian Model Averaging. Advances in Atmospheric Sciences, 2021, 38, 1580-1595.	4.3	1
5	Global and Regional Estimation of Carbon Uptake Using CMIP6 ESM Compared With TRENDY Ensembles at the Centennial Scale. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035135.	3.3	7
6	Absolute Contribution of the Non-Uniform Spatial Distribution of Atmospheric CO2 to Net Primary Production through CO2-Radiative Forcing. Sustainability, 2021, 13, 10897.	3.2	0
7	Integration of nitrogen dynamics into the land surface model AVIM. Part 2: baseline data and variation of carbon and nitrogen fluxes in China. Atmospheric and Oceanic Science Letters, 2020, 13, 518-526.	1.3	2
8	Spatiotemporal variations of carbon flux and nitrogen deposition flux linked with climate change at the centennial scale in China. Science China Earth Sciences, 2020, 63, 731-748.	5.2	7
9	The integration of nitrogen dynamics into a land surface model. Part 1: model description and site-scale validation. Atmospheric and Oceanic Science Letters, 2019, 12, 50-57.	1.3	4
10	Longâ€ŧerm change of total cloud cover and its possible reason over South China during 1960–2012. Atmospheric Science Letters, 2019, 20, e943.	1.9	1
11	Subdaily to Seasonal Change of Surface Energy and Water Flux of the Haihe River Basin in China: Noah and Noah-MP Assessment. Advances in Atmospheric Sciences, 2019, 36, 79-92.	4.3	3
12	Contribution of largeâ€scale circulation anomalies to variability of summer precipitation extremes in northeast China. Atmospheric Science Letters, 2018, 19, e867.	1.9	17
13	Role contribution of biological nitrogen fixation to future terrestrial net land carbon accumulation under warming condition at centennial scale. Journal of Cleaner Production, 2018, 202, 1158-1166.	9.3	7