Helle F. Jørgensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6180555/publications.pdf

Version: 2024-02-01

257357 345118 5,429 36 24 36 citations g-index h-index papers 38 38 38 7824 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Efficacy and limitations of senolysis in atherosclerosis. Cardiovascular Research, 2022, 118, 1713-1727.	1.8	34
2	Vascular smooth muscle cell phenotypic switching and plaque stability: a role for CHI3L1. Cardiovascular Research, 2021, 117, 2691-2693.	1.8	2
3	DNA glycosylase Neil3 regulates vascular smooth muscle cell biology during atherosclerosis development. Atherosclerosis, 2021, 324, 123-132.	0.4	11
4	Telomere damage promotes vascular smooth muscle cell senescence and immune cell recruitment after vessel injury. Communications Biology, 2021, 4, 611.	2.0	32
5	APRIL limits atherosclerosis by binding to heparan sulfate proteoglycans. Nature, 2021, 597, 92-96.	13.7	38
6	Mechanisms of vascular smooth muscle cell investment and phenotypic diversification in vascular diseases. Biochemical Society Transactions, 2021, 49, 2101-2111.	1.6	25
7	PCSK6-Mediated Regulation of Vascular Remodeling. Circulation Research, 2020, 126, 586-588.	2.0	6
8	A stromal cell niche sustains ILC2-mediated type-2 conditioning in adipose tissue. Journal of Experimental Medicine, 2019, 216, 1999-2009.	4.2	101
9	Vascular smooth muscle cells in atherosclerosis. Nature Reviews Cardiology, 2019, 16, 727-744.	6.1	628
10	The role of smooth muscle cells in plaque stability: Therapeutic targeting potential. British Journal of Pharmacology, 2019, 176, 3741-3753.	2.7	81
11	Epigenetic Regulation of Vascular Smooth Muscle Cells by Histone H3 Lysine 9 Dimethylation Attenuates Target Gene-Induction by Inflammatory Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2289-2302.	1.1	27
12	Vascular Smooth Muscle Cell Plasticity and Autophagy in Dissecting Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1149-1159.	1.1	121
13	Disease-relevant transcriptional signatures identified in individual smooth muscle cells from healthy mouse vessels. Nature Communications, 2018, 9, 4567.	5.8	219
14	Jmjd2c/Kdm4c facilitates the assembly of essential enhancer-protein complexes at the onset of embryonic stem cell differentiation. Development (Cambridge), 2017, 144, 567-579.	1.2	24
15	Extensive Proliferation of a Subset of Differentiated, yet Plastic, Medial Vascular Smooth Muscle Cells Contributes to Neointimal Formation in Mouse Injury and Atherosclerosis Models. Circulation Research, 2016, 119, 1313-1323.	2.0	317
16	Transcriptional Mechanisms of Proneural Factors and REST in Regulating Neuronal Reprogramming of Astrocytes. Cell Stem Cell, 2015, 17, 74-88.	5.2	187
17	Modeling of epigenome dynamics identifies transcription factors that mediate Polycomb targeting. Genome Research, 2013, 23, 60-73.	2.4	108
18	Embryonic stem cell–derived hemangioblasts remain epigenetically plastic and require PRC1 to prevent neural gene expression. Blood, 2011, 117, 83-87.	0.6	18

#	Article	IF	CITATIONS
19	Can controversies be put to REST?. Nature, 2010, 467, E3-E4.	13.7	11
20	Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators. Nature Cell Biology, 2010, 12, 618-624.	4.6	274
21	REST selectively represses a subset of RE1-containing neuronal genes in mouse embryonic stem cells. Development (Cambridge), 2009, 136, 715-721.	1.2	70
22	Is REST required for ESC pluripotency?. Nature, 2009, 457, E4-E5.	13.7	52
23	LOCKing in Cellular Potential. Cell Stem Cell, 2009, 4, 192-194.	5. 2	1
24	A Novel CpG Island Set Identifies Tissue-Specific Methylation at Developmental Gene Loci. PLoS Biology, 2008, 6, e22.	2.6	533
25	MBD2-Mediated Transcriptional Repression of the <i>p14</i> ^{ARF} Tumor Suppressor Gene in Human Colon Cancer Cells. Pathobiology, 2008, 75, 281-287.	1.9	30
26	The impact of chromatin modifiers on the timing of locus replication in mouse embryonic stem cells. Genome Biology, 2007, 8, R169.	13.9	68
27	Chromatin signatures of pluripotent cell lines. Nature Cell Biology, 2006, 8, 532-538.	4.6	1,213
28	Polycomb Repressive Complexes Restrain the Expression of Lineage-Specific Regulators in Embryonic Stem Cells. Cell Cycle, 2006, 5, 1411-1414.	1.3	64
29	Engineering a high-affinity methyl-CpG-binding protein. Nucleic Acids Research, 2006, 34, e96-e96.	6.5	73
30	Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus. Journal of Cell Science, 2006, 119, 132-140.	1.2	276
31	Mbd1 Is Recruited to both Methylated and Nonmethylated CpGs via Distinct DNA Binding Domains. Molecular and Cellular Biology, 2004, 24, 3387-3395.	1.1	158
32	MeCP2 and other methyl-cpg binding proteins. Mental Retardation and Developmental Disabilities Research Reviews, 2002, 8, 87-93.	3.5	64
33	The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes and Development, 2001, 15, 1613-1618.	2.7	431
34	Regulation of Elongation Factor- \hat{l} ± Expression by Growth Factors and Anti-receptor Blocking Antibodies. Journal of Biological Chemistry, 2001, 276, 5636-5642.	1.6	22
35	The Human Elongation Factor 1 A-2 Gene (EEF1A2): Complete Sequence and Characterization of Gene Structure and Promoter Activity. Genomics, 2000, 68, 63-70.	1.3	19
36	Rapid identification of DNA-binding proteins by mass spectrometry. Nature Biotechnology, 1999, 17, 884-888.	9.4	74