
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6179506/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Mmh</i> / <i>Ogg1</i> gene inactivation results in accumulation of 8-hydroxyguanine in mice. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 4156-4161.	7.1	332
2	Recent advances in the protocols of transgenic mouse mutation assays. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2000, 455, 191-215.	1.0	198
3	Enhanced Spontaneous and Benzo(a)pyrene-Induced Mutations in the Lung of Nrf2-Deficient gpt Delta Mice. Cancer Research, 2007, 67, 5643-5648.	0.9	70
4	Heavy-ion-induced mutations in thegpt delta transgenic mouse: Comparison of mutation spectra induced by heavy-ion, X-ray, and ?-ray radiation. Environmental and Molecular Mutagenesis, 2002, 40, 207-215.	2.2	64
5	Parp-1 deficiency causes an increase of deletion mutations and insertions/rearrangements in vivo after treatment with an alkylating agent. Oncogene, 2005, 24, 1328-1337.	5.9	59
6	Molecular nature of intrachromosomal deletions and base substitutions induced by environmental mutagens. Environmental and Molecular Mutagenesis, 2005, 45, 150-161.	2.2	59
7	Diurnally Entrained Anticipatory Behavior in Archaea. PLoS ONE, 2009, 4, e5485.	2.5	59
8	Novel transgenic rat for in vivo genotoxicity assays using 6-thioguanine and Spi? selection. Environmental and Molecular Mutagenesis, 2003, 41, 253-259.	2.2	56
9	In vivo mutational analysis of liver DNA ingpt delta transgenic rats treated with the hepatocarcinogensN-nitrosopyrrolidine, 2-amino-3-methylimidazo[4,5-f]quinoline, and di(2-ethylhexyl)phthalate. Molecular Carcinogenesis, 2005, 42, 9-17.	2.7	50
10	Mechanisms of chemopreventive effects of 8-methoxypsoralen against 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced mouse lung adenomas. Carcinogenesis, 2005, 26, 1947-1955.	2.8	44
11	Evaluation of the sensitivity and specificity of in vivo erythrocyte micronucleus and transgenic rodent gene mutation tests to detect rodent carcinogens. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2016, 802, 1-29.	1.7	41
12	Mutagenicity of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in the new gptΔ transgenic mouse. Cancer Letters, 1999, 143, 241-244.	7.2	40
13	Mutagenic potency of <i>Helicobacter pylori</i> in the gastric mucosa of mice is determined by sex and duration of infection. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15217-15222.	7.1	40
14	IL-10 deficiency leads to somatic mutations in a model of IBD. Carcinogenesis, 2006, 27, 1068-1073.	2.8	38
15	Ochratoxin A induces DNA double-strand breaks and large deletion mutations in the carcinogenic target site of gpt delta rats. Mutagenesis, 2014, 29, 27-36.	2.6	38
16	Molecular Characterization of Mitomycin C-Induced Large Deletions and Tandem-Base Substitutions in the Bone Marrow of <i>gpt</i> delta Transgenic Mice. Chemical Research in Toxicology, 2003, 16, 171-179.	3.3	35
17	Transgenic rat models for mutagenesis and carcinogenesis. Genes and Environment, 2017, 39, 11.	2.1	35
18	Low dose genotoxicity of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MelQx) in gpt delta transgenic mice. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2003, 541,	1.7	34

91-102.

#	Article	IF	CITATIONS
19	delta transgenic mouse: A novel approach for molecular dissection of deletion mutations. Advances in Biophysics, 2004, 38, 97-121.	0.5	31
20	Integration of In Vivo Genotoxicity and Short-term Carcinogenicity Assays Using F344 gpt Delta Transgenic Rats: In Vivo Mutagenicity of 2,4-Diaminotoluene and 2,6-Diaminotoluene Structural Isomers. Toxicological Sciences, 2010, 114, 71-78.	3.1	31
21	Potent genotoxicity of aminophenylnorharman, formed from non-mutagenic norharman and aniline, in the liver of gpt delta transgenic mouse. Carcinogenesis, 2003, 24, 1985-1993.	2.8	29
22	Role of p53 in the Progression from Ochratoxin A-Induced DNA Damage to Gene Mutations in the Kidneys of Mice. Toxicological Sciences, 2015, 144, 65-76.	3.1	29
23	Heavy-ion-induced mutations in thegpt delta transgenic mouse: Effect ofp53 gene knockout. Environmental and Molecular Mutagenesis, 2002, 40, 216-225.	2.2	28
24	In vivo positive mutagenicity of 1,4-dioxane and quantitative analysis of its mutagenicity and carcinogenicity in rats. Archives of Toxicology, 2018, 92, 3207-3221.	4.2	28
25	In vivo mutagenesis induced by benzo[a]pyrene instilled into the lung ofgpt delta transgenic mice. Environmental and Molecular Mutagenesis, 2005, 45, 365-373.	2.2	27
26	Large scale physiological readjustment during growth enables rapid, comprehensive and inexpensive systems analysis. BMC Systems Biology, 2010, 4, 64.	3.0	27
27	New Insight into Intrachromosomal Deletions Induced by Chrysotile in thegptdelta Transgenic Mutation Assay. Environmental Health Perspectives, 2007, 115, 87-92.	6.0	26
28	Mutations in the lungs of <i>gpt</i> delta transgenic mice following inhalation of diesel exhaust. Environmental and Molecular Mutagenesis, 2007, 48, 682-693.	2.2	26
29	Further characterization and validation ofgpt delta transgenic mice for quantifying somatic mutations in vivo. Environmental and Molecular Mutagenesis, 2001, 37, 297-303.	2.2	25
30	Targets and mechanisms of chemically induced aneuploidy. Part 1 of the report of the 2017 IWGT workgroup on assessing the risk of aneugens for carcinogenesis and hereditary diseases. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2019, 847, 403025.	1.7	25
31	Evaluation of <i>in vivo</i> genotoxicity induced by <i>N</i> â€ethylâ€ <i>N</i> â€nitrosourea, benzo[<i>a</i>]pyrene, and 4â€nitroquinolineâ€1â€oxide in the <i>Pigâ€a</i> and <i>gpt</i> assays. Environmental and Molecular Mutagenesis, 2013, 54, 747-754.	2.2	23
32	Genomic integration of lambda EG10 transgene in gpt delta transgenic rodents. Genes and Environment, 2015, 37, 24.	2.1	23
33	Acrylamide genotoxicity in young versus adult gpt delta male rats. Mutagenesis, 2011, 26, 545-549.	2.6	22
34	Chemopreventive effects of silymarin against 1,2-dimethylhydrazine plus dextran sodium sulfate-induced inflammation-associated carcinogenicity and genotoxicity in the colon of gpt delta rats. Carcinogenesis, 2011, 32, 1512-1517.	2.8	21
35	Deletion and single nucleotide substitution at G:C in the kidney of gpt delta transgenic mice after ferric nitrilotriacetate treatment. Cancer Science, 2006, 97, 1159-1167.	3.9	20
36	Differential effects of low- and high-dose X-rays on N-ethyl-N-nitrosourea-induced mutagenesis in thymocytes of B6C3F1 gpt-delta mice. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 640, 27-37.	1.0	20

#	Article	IF	CITATIONS
37	Estimation of the frequency of inherited germline mutations by whole exome sequencing in ethyl nitrosourea-treated and untreated gpt delta mice. Genes and Environment, 2016, 38, 10.	2.1	19
38	Effect ofAtmDisruption on Spontaneously Arising and Radiation-Induced Deletion Mutations in Mouse Liver. Radiation Research, 2003, 160, 549-558.	1.5	18
39	In vivo evidence that DNA polymerase kappa is responsible for error-free bypass across DNA cross-links induced by mitomycin C. DNA Repair, 2014, 24, 113-121.	2.8	17
40	Role of aneuploidy in the carcinogenic process: Part 3 of the report of the 2017 IWGT workgroup on assessing the risk of aneugens for carcinogenesis and hereditary diseases. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2019, 847, 403032.	1.7	17
41	Radiation Dose-Rate Effect on Mutation Induction in Spleen and Liver of gpt delta Mice. Radiation Research, 2010, 173, 138.	1.5	16
42	Combined genotoxic effects of radiation and a tobacco-specific nitrosamine in the lung of gpt delta transgenic mice. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2007, 626, 15-25.	1.7	15
43	In vivo mutagenesis in the lungs ofgpt-delta transgenic mice treated intratracheally with 1,6-dinitropyrene. Environmental and Molecular Mutagenesis, 2006, 47, 277-283.	2.2	14
44	Lack of in vivo mutagenicity and oxidative DNA damage by flumequine in the livers of gpt delta mice. Archives of Toxicology, 2007, 81, 63-69.	4.2	13
45	Chemically induced aneuploidy in germ cells. Part II of the report of the 2017 IWGT workgroup on assessing the risk of aneugens for carcinogenesis and hereditary diseases. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2019, 848, 403023.	1.7	13
46	Combined Ascorbic Acid and Sodium Nitrite Treatment Induces Oxidative DNA Damage-Associated Mutagenicity In Vitro, but Lacks Initiation Activity in Rat Forestomach Epithelium. Toxicological Sciences, 2008, 104, 274-282.	3.1	11
47	Evaluation of the Genotoxicity of Aristolochic Acid in the Kidney and Liver of F344 gpt delta Transgenic Rat Using a 28-Day Repeated-dose Protocol: A Collaborative Study of the gpt delta Transgenic Rat Mutation Assay. Genes and Environment, 2012, 34, 18-24.	2.1	11
48	Dose-dependent de novo germline mutations detected by whole-exome sequencing in progeny of ENU-treated male gpt delta mice. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2016, 810, 30-39.	1.7	11
49	Mutant Frequency is not Increased in Mice Orally Exposed to Sodium Dichromate. Food Safety (Tokyo,) Tj ETQq1	1 0,7843 1.8	14 rgBT /Ov
50	Antigenotoxic effects of <i>p53</i> on spontaneous and ultraviolet light B–induced deletions in the epidermis of <i>gpt</i> delta transgenic mice. Environmental and Molecular Mutagenesis, 2011, 52, 244-252.	2.2	10
51	Limited ability of DNA polymerase kappa to suppress benzo[<i>a</i>]pyreneâ€induced genotoxicity in vivo. Environmental and Molecular Mutagenesis, 2017, 58, 644-653.	2.2	10
52	Structures and Biological Properties of DNA Adducts Derived from N-Nitroso Bile Acid Conjugates. Chemical Research in Toxicology, 2005, 18, 1553-1562.	3.3	9
53	A newly established GDL1 cell line from gpt delta mice well reflects the in vivo mutation spectra induced by mitomycin C. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2006, 609, 102-115.	1.7	9
54	Spontaneous and Induced gpt and Spiâ´' Mutant Frequencies in gpt delta Transgenic Rodents. Genes and Environment, 2009, 31, 105-118.	2.1	9

#	Article	IF	CITATIONS
55	Spontaneous Mutagenesis in Rodents: Spontaneous Gene Mutations Identified by Neutral Reporter Genes in gpt Delta Transgenic Mice and Rats. Journal of Health Science, 2009, 55, 40-49.	0.9	9
56	Integration of micronucleus tests with a gene mutation assay in F344 gpt delta transgenic rats using benzo[a]pyrene. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2019, 837, 1-7.	1.7	9
57	Improvement of the Spi- assay for mutations ingpt delta mice by including magnesium ions during plaque formation. Environmental and Molecular Mutagenesis, 2003, 41, 370-372.	2.2	8
58	Oxidative-stress-driven mutagenesis in the small intestine of the gpt delta mouse induced by oral administration of potassium bromate. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2020, 850-851, 503136.	1.7	8
59	in vivo Approaches to Identify Mutations and in vitro Research to Reveal Underlying Mechanisms of Genotoxic Thresholds. Genes and Environment, 2012, 34, 146-152.	2.1	7
60	Evaluation of the genotoxicity of tamoxifen in the liver and kidney of F344 gpt delta transgenic rat in 3-week and 13-week repeated dose studies. Toxicology, 2013, 312, 56-62.	4.2	7
61	Effect of sampling time on somatic and germ cell mutations induced by acrylamide in gpt delta mice. Genes and Environment, 2021, 43, 4.	2.1	7
62	Development of a new quantitative structure–activity relationship model for predicting Ames mutagenicity of food flavor chemicals using StarDropâ"¢ auto-Modellerâ"¢. Genes and Environment, 2021, 43, 16.	2.1	7
63	In vivo and in vitro mutagenicity of perillaldehyde and cinnamaldehyde. Genes and Environment, 2021, 43, 30.	2.1	7
64	Research on environmental mutagenesis from young scientists – the open symposium of the Japanese Environmental Mutagen Society (JEMS) in 2017. Genes and Environment, 2017, 39, .	2.1	6
65	Gene mutation and micronucleus assays in gpt delta mice treated with 2,2′,4,4′-tetrabromodiphenyl ether. Mutagenesis, 2018, 33, 153-160.	2.6	6
66	Evaluation of In Vivo Mutagenicity by 2,4-Diaminotoluene and 2,6-Diaminotoluene in Liver of F344 gpt delta Transgenic Rat Dosed for 28 Days: A Collaborative Study of the gpt delta Transgenic Rat Mutation Assay. Genes and Environment, 2012, 34, 25-33.	2.1	6
67	Involvement of mismatch repair proteins in adaptive responses induced by N-methyl-N′-nitro-N-nitrosoguanidine against γ-induced genotoxicity in human cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2011, 713, 56-63.	1.0	5
68	Genotoxicity of phenacetin in the kidney and liver of Sprague-Dawley gpt delta transgenic rats in 26-week and 52-week repeated-dose studies. Toxicology, 2014, 324, 10-17.	4.2	5
69	Alterations in the mutagenicity and mutation spectrum induced by benzo[a]pyrene instilled in the lungs of gpt delta mice of various ages. Genes and Environment, 2015, 37, 7.	2.1	5
70	Benchmark dose analysis of multiple genotoxicity endpoints in gpt delta mice exposed to aristolochic acid I. Mutagenesis, 2021, 36, 87-94.	2.6	5
71	In Vivo Mutagenesis Caused by Diesel Exhaust in the Testis of gpt delta Transgenic Mice. Genes and Environment, 2009, 31, 1-8.	2.1	5
72	New homozygous gpt delta transgenic rat strain improves an efficiency of the in vivo mutagenicity assay. Genes and Environment, 2021, 43, 25.	2.1	4

#	Article	IF	CITATIONS
73	Efficient method for mapping and characterizing structures of deletion mutations ingpt delta mice using Southern blot analysis with oligo DNA probes. Environmental and Molecular Mutagenesis, 2004, 43, 204-207.	2.2	3
74	Modulatory Effects of Capsaicin on N-diethylnitrosamine (DEN)-induced Mutagenesis in Salmonella typhimurium YG7108 and DEN-induced Hepatocarcinogenesis in gpt Delta Transgenic Rats. Genes and Environment, 2011, 33, 160-166.	2.1	3
75	Change over time of the mutagenicity in the lungs of gpt delta transgenic mice by extract of airborne particles collected from ambient air in the Tokyo metropolitan area. Genes and Environment, 2018, 40, 25.	2.1	3
76	Multiple-endpoint genotoxicity assay for colon carcinogen 1,2-dimethylhydrazine. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2020, 849, 503130.	1.7	3
77	Mutation Spectra in Cisplatin- and Transplatin-treated GDL1 Cells Clarified the Different Mode of Action of These Compounds in Mammalian Cells. Genes and Environment, 2007, 29, 89-99.	2.1	3
78	Evaluation of the in vivo Mutagenicity of Nickel Subsulfide in the Lung of F344 gpt delta Transgenic Rats Exposed by Intratracheal Instillation: A Collaborative Study for the gpt delta Transgenic Rat Mutation Assay. Genes and Environment, 2012, 34, 34-44.	2.1	3
79	Comparison of the frequencies of ENU-induced point mutations in male germ cells and inherited germline mutations in their offspring. Genes and Environment, 2021, 43, 43.	2.1	3
80	Quantitative analysis of mutagenicity and carcinogenicity of 2-amino-3-methylimidazo[4,5-f]quinoline in F344 gpt delta transgenic rats. Mutagenesis, 2019, 34, 279-287.	2.6	2
81	Extrapolation of <i>in vitro</i> structural alerts for mutagenicity to the <i>in vivo</i> endpoint. Mutagenesis, 2019, 34, 111-121.	2.6	2
82	Effects of the scid mutation on X-ray-induced deletions in the brain and spleen of gpt delta mice. Genes and Environment, 2020, 42, 19.	2.1	2
83	Characteristic mutations induced in the small intestine of Msh2-knockout gpt delta mice. Genes and Environment, 2021, 43, 27.	2.1	2
84	Genotoxicity assessment of food-flavoring chemicals used in Japan. Toxicology Reports, 2022, 9, 1008-1012.	3.3	2
85	2nd International Symposium on Genotoxic and Carcinogenic Thresholds. Genes and Environment, 2012, 34, 141-145.	2.1	1
86	Molecular dissection of in vivo DNA rearrangements induced by radiation and chemical mutagens. International Congress Series, 2005, 1276, 25-28.	0.2	0
87	The role of DNA polymerase ζ in benzo[a]pyrene-induced mutagenesis in the mouse lung. Mutagenesis, 2021, 36, 155-164.	2.6	Ο