
Patrik Danielson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6179385/publications.pdf Version: 2024-02-01

DATDIK DANIELSON

#	Article	IF	CITATIONS
1	Substance P Promotes Diabetic Corneal Epithelial Wound Healing Through Molecular Mechanisms Mediated via the Neurokinin-1 Receptor. Diabetes, 2014, 63, 4262-4274.	0.6	141
2	Presence of substance P and the neurokinin-1 receptor in tenocytes of the human Achilles tendon. Regulatory Peptides, 2008, 150, 81-87.	1.9	80
3	Corneal Epithelium-Derived Neurotrophic Factors Promote Nerve Regeneration. , 2017, 58, 4695.		70
4	Immunohistochemical and histochemical findings favoring the occurrence of autocrine/paracrine as well as nerveâ€related cholinergic effects in chronic painful patellar tendon tendinosis. Microscopy Research and Technique, 2006, 69, 808-819.	2.2	69
5	Studies on the importance of sympathetic innervation, adrenergic receptors, and a possible local catecholamine production in the development of patellar tendinopathy (tendinosis) in man. Microscopy Research and Technique, 2007, 70, 310-324.	2.2	56
6	Substance P Enhances Keratocyte Migration and Neutrophil Recruitment through Interleukin-8. Molecular Pharmacology, 2016, 89, 215-225.	2.3	56
7	Distribution of general (PGP 9.5) and sensory (substance P/CGRP) innervations in the human patellar tendon. Knee Surgery, Sports Traumatology, Arthroscopy, 2006, 14, 125-132.	4.2	55
8	Ascorbic Acid Promotes the Stemness of Corneal Epithelial Stem/Progenitor Cells and Accelerates Epithelial Wound Healing in the Cornea. Stem Cells Translational Medicine, 2017, 6, 1356-1365.	3.3	53
9	Marked sympathetic component in the perivascular innervation of the dorsal paratendinous tissue of the patellar tendon in arthroscopically treated tendinosis patients. Knee Surgery, Sports Traumatology, Arthroscopy, 2008, 16, 621-626.	4.2	50
10	In situ hybridization studies confirming recent findings of the existence of a local nonneuronal catecholamine production in human patellar tendinosis. Microscopy Research and Technique, 2007, 70, 908-911.	2.2	41
11	Expression Profiles of Neuropeptides, Neurotransmitters, and Their Receptors in Human Keratocytes In Vitro and In Situ. PLoS ONE, 2015, 10, e0134157.	2.5	41
12	Surface Topography and Mechanical Strain Promote Keratocyte Phenotype and Extracellular Matrix Formation in a Biomimetic 3D Corneal Model. Advanced Healthcare Materials, 2017, 6, 1601238.	7.6	38
13	Ciliary Neurotrophic Factor Promotes the Migration of Corneal Epithelial Stem/progenitor Cells by Up-regulation of MMPs through the Phosphorylation of Akt. Scientific Reports, 2016, 6, 25870.	3.3	35
14	Extensive expression of markers for acetylcholine synthesis and of M2 receptors in tenocytes in therapy-resistant chronic painful patellar tendon tendinosis — a pilot study. Life Sciences, 2007, 80, 2235-2238.	4.3	34
15	Substance P enhances collagen remodeling and MMPâ€3 expression by human tenocytes. Journal of Orthopaedic Research, 2013, 31, 91-98.	2.3	34
16	Induction of Fibroblast Senescence During Mouse Corneal Wound Healing. , 2019, 60, 3669.		34
17	Substance P reduces TNF-α-induced apoptosis in human tenocytes through NK-1 receptor stimulation. British Journal of Sports Medicine, 2014, 48, 1414-1420.	6.7	28
18	Sustained Release of TPCAâ€1 from Silk Fibroin Hydrogels Preserves Keratocyte Phenotype and Promotes Corneal Regeneration by Inhibiting Interleukinâ€1 <i>β</i> Signaling. Advanced Healthcare Materials, 2020, 9, e2000591.	7.6	26

PATRIK DANIELSON

#	Article	IF	CITATIONS
19	Aktâ€mediated antiâ€apoptotic effects of substance P in Antiâ€Fasâ€induced apoptosis of human tenocytes. Journal of Cellular and Molecular Medicine, 2013, 17, 723-733.	3.6	24
20	Regulation of Keratocyte Phenotype and Cell Behavior by Substrate Stiffness. ACS Biomaterials Science and Engineering, 2020, 6, 5162-5171.	5.2	22
21	Mechanical stress potentiates the differentiation of periodontal ligament stem cells into keratocytes. British Journal of Ophthalmology, 2018, 102, 562-569.	3.9	18
22	Acetylcholine enhances keratocyte proliferation through muscarinic receptor activation. International Immunopharmacology, 2015, 29, 57-62.	3.8	16
23	The effects of substance P and acetylcholine on human tenocyte proliferation converge mechanistically via TGF-β1. PLoS ONE, 2017, 12, e0174101.	2.5	16
24	Substance P and patterned silk biomaterial stimulate periodontal ligament stem cells to form corneal stroma in a bioengineered three-dimensional model. Stem Cell Research and Therapy, 2017, 8, 260.	5.5	14
25	Substance P induces fibrotic changes through activation of the RhoA/ROCK pathway in an in vitro human corneal fibrosis model. Journal of Molecular Medicine, 2019, 97, 1477-1489.	3.9	13
26	Acetylcholine decreases formation of myofibroblasts and excessive extracellular matrix production in an in vitro human corneal fibrosis model. Journal of Cellular and Molecular Medicine, 2020, 24, 4850-4862.	3.6	9
27	Antiapoptotic Effect of Acetylcholine in Fas-Induced Apoptosis in Human Keratocytes. , 2016, 57, 5892.		8
28	Transforming Growth Factor Beta 1 Modulates the Functional Expression of the Neurokinin-1 Receptor in Human Keratocytes. Current Eye Research, 2016, 41, 1035-1043.	1.5	7
29	Glutamate signaling through the NMDA receptor reduces the expression of scleraxis in plantaris tendon derived cells. BMC Musculoskeletal Disorders, 2017, 18, 218.	1.9	7
30	Activation of NF-κB signaling via cytosolic mitochondrial RNA sensing in kerotocytes with mitochondrial DNA common deletion. Scientific Reports, 2021, 11, 7360.	3.3	6
31	An Emerging Role for Angiogenesis in Tendinopathy. European Musculoskeletal Review, 2009, 4, 75-76.	0.0	5
32	Microstructured collagen films for 3D corneal stroma modelling. Connective Tissue Research, 2022, 63, 443-452.	2.3	2
33	93â€Evolving Inflammatory Cell Populations In The Overused Rabbit Achilles Tendon. British Journal of Sports Medicine, 2014, 48, A60,2-A61	6.7	1