Timo Kautz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6179352/publications.pdf Version: 2024-02-01

ΤΙΜΟ ΚΛΠΤΖ

#	Article	IF	CITATIONS
1	Organic Manure Increases Carbon Sequestration Far beyond the "4 per 1000 Initiative―Goal on a Sandy Soil in the Thyrow Long-Term Field Experiment DIV.2. Agriculture (Switzerland), 2022, 12, 170.	3.1	7
2	Metabolic activity of Hordeum vulgare, Brassica napus and Vicia faba in Worm and Root type Biopore Sheaths. Plant and Soil, 2022, 472, 565.	3.7	0
3	Relating Profile Wall Root-Length Density Estimates to Monolith Root-Length Density Measurements of Cover Crops. Agronomy, 2022, 12, 48.	3.0	2
4	Root Distribution of Brassica napus and Vicia faba within the Sheath of Root or Earthworm Biopore. Agriculture (Switzerland), 2021, 11, 61.	3.1	3
5	Effects of mixing two legume species at seedling stage under different environmental conditions. PeerJ, 2021, 9, e10615.	2.0	6
6	Can precrops uplift subsoil nutrients to topsoil?. Plant and Soil, 2021, 463, 329-345.	3.7	18
7	Chloride Changes Soil–Plant Water Relations in Potato (Solanum tuberosum L.). Agronomy, 2021, 11, 736.	3.0	3
8	Root and shoot growth of spring wheat (Triticum aestivum L.) are differently affected by increasing subsoil biopore density when grown under different subsoil moisture. Biology and Fertility of Soils, 2021, 57, 1155.	4.3	3
9	The Chemical Composition of Biogas Digestates Determines Their Effect on Soil Microbial Activity. Agriculture (Switzerland), 2020, 10, 244.	3.1	18
10	Monitoring N : P Ratio and Cd, Cu, Pb, and Zn Contents in Different Types of Anaerobic Digestates: A Six-Year Study Case. International Journal of Agronomy, 2020, 2020, 1-7.	1.2	0
11	Root Growth of Hordeum vulgare and Vicia faba in the Biopore Sheath. Agriculture (Switzerland), 2020, 10, 650.	3.1	4
12	Vertical Root Distribution of Different Cover Crops Determined with the Profile Wall Method. Agriculture (Switzerland), 2020, 10, 503.	3.1	24
13	Crop Resilience to Drought With and Without Response Diversity. Frontiers in Plant Science, 2020, 11, 721.	3.6	14
14	Comparing Macropore Exploration by Faba Bean, Wheat, Barley and Oilseed Rape Roots Using In Situ Endoscopy. Journal of Soil Science and Plant Nutrition, 2019, 19, 689-700.	3.4	15
15	Modeling the Impact of Biopores on Root Growth and Root Water Uptake. Vadose Zone Journal, 2019, 18, 1-20.	2.2	36
16	Distinct communities of Cercozoa at different soil depths in a temperate agricultural field. FEMS Microbiology Ecology, 2019, 95, .	2.7	21
17	Subsoil arbuscular mycorrhizal fungal communities in arable soil differ from those in topsoil. Soil Biology and Biochemistry, 2018, 117, 83-86.	8.8	38
18	Dynamics of plant nutrient uptake as affected by biopore-associated root growth in arable subsoil. Plant and Soil, 2017, 415, 145-160.	3.7	22

Тімо Каитz

#	Article	IF	CITATIONS
19	Six months of L. terrestris L. activity in root-formed biopores increases nutrient availability, microbial biomass and enzyme activity. Applied Soil Ecology, 2017, 120, 135-142.	4.3	44
20	Bacteria utilizing plantâ€derived carbon in the rhizosphere of <i>Triticum aestivum</i> change in different depths of an arable soil. Environmental Microbiology Reports, 2017, 9, 729-741.	2.4	21
21	Precrop root system determines root diameter of subsequent crop. Biology and Fertility of Soils, 2016, 52, 113-118.	4.3	30
22	Optimising Cropping Techniques for Nutrient and Environmental Management in Organic Agriculture. Sustainable Agriculture Research, 2015, 4, 15.	0.3	20
23	Prokaryotes in Subsoil—Evidence for a Strong Spatial Separation of Different Phyla by Analysing Co-occurrence Networks. Frontiers in Microbiology, 2015, 6, 1269.	3.5	49
24	Research on subsoil biopores and their functions in organically managed soils: A review. Renewable Agriculture and Food Systems, 2015, 30, 318-327.	1.8	82
25	Quantification of soil biopore density after perennial fodder cropping. Plant and Soil, 2015, 394, 73-85.	3.7	46
26	Spatial variability of hydrolytic and oxidative potential enzyme activities in different subsoil compartments. Biology and Fertility of Soils, 2015, 51, 517-521.	4.3	33
27	Root growth dynamics inside and outside of soil biopores as affected by crop sequence determined with the profile wall method. Biology and Fertility of Soils, 2015, 51, 847-856.	4.3	78
28	The effect of earthworm activity on soil bioporosity – Investigated with X-ray computed tomography and endoscopy. Soil and Tillage Research, 2015, 146, 79-88.	5.6	69
29	Community structure of prokaryotes and their functional potential in subsoils is more affected by spatial heterogeneity than by temporal variations. Soil Biology and Biochemistry, 2014, 75, 197-201.	8.8	51
30	Contribution of anecic earthworms to biopore formation during cultivation of perennial ley crops. Pedobiologia, 2014, 57, 47-52.	1.2	47
31	Root-length densities of various annual crops following crops with contrasting root systems. Soil and Tillage Research, 2014, 137, 50-57.	5.6	100
32	Root growth in biopores—evaluation with in situ endoscopy. Plant and Soil, 2013, 371, 179-190.	3.7	64
33	Abundance of ammonia oxidizing microbes and denitrifiers in different soil horizons of an agricultural soil in relation to the cultivated crops. Biology and Fertility of Soils, 2013, 49, 1243-1246.	4.3	20
34	Barley roots are not constrained to large-sized biopores in the subsoil of a deep Haplic Luvisol. Biology and Fertility of Soils, 2013, 49, 959-963.	4.3	44
35	Modeling biopore effects on root growth and biomass production on soils with pronounced sub-soil clay accumulation. Ecological Modelling, 2013, 256, 6-15.	2.5	86
36	Nutrient acquisition from arable subsoils in temperate climates: A review. Soil Biology and Biochemistry, 2013, 57, 1003-1022.	8.8	239

Тімо Каитz

#	Article	IF	CITATIONS
37	Biochar Affected by Composting with Farmyard Manure. Journal of Environmental Quality, 2013, 42, 164-172.	2.0	143
38	Evidence of improved water uptake from subsoil by spring wheat following lucerne in a temperate humid climate. Field Crops Research, 2012, 126, 56-62.	5.1	75
39	Sorption of copper (II) and sulphate to different biochars before and after composting with farmyard manure. European Journal of Soil Science, 2012, 63, 399-409.	3.9	84
40	Grouping and classification of wheat from organic and conventional production systems by combining three image forming methods. Biological Agriculture and Horticulture, 2011, 27, 320-336.	1.0	20
41	Effects of perennial fodder crops on soil structure in agricultural headlands. Journal of Plant Nutrition and Soil Science, 2010, 173, 490-501.	1.9	45
42	<i>In situ</i> endoscopy: New insights to root growth in biopores. Plant Biosystems, 2010, 144, 440-442.	1.6	16
43	Abundance and biodiversity of soil microarthropods as influenced by different types of organic manure in a long-term field experiment in Central Spain. Applied Soil Ecology, 2006, 33, 278-285.	4.3	65
44	Microbial activity in a sandy arable soil is governed by the fertilization regime. European Journal of Soil Biology, 2004, 40, 87-94.	3.2	77
45	On the Ecology and Conservation of Spruceanthus theobromae (Lejeuneaceae, Hepaticae) from Western Ecuador. Bryologist, 2001, 104, 607-612.	0.6	12
46	Effect of crop rotation and straw application in combination with mineral nitrogen fertilization on soil carbon sequestration in the Thyrow long-term experiment Thy_D5. Plant and Soil, 0, , 1.	3.7	2