List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6179313/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Field crop responses to ultraviolet-B radiation: a review. Agricultural and Forest Meteorology, 2003, 120, 191-218.	4.8	408
2	Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy, 2005, 22, 391-403.	4.1	384
3	High-Temperature Effects on Rice Growth, Yield, and Grain Quality. Advances in Agronomy, 2011, 111, 87-206.	5.2	292
4	Differences in in vitro Pollen Germination and Pollen Tube Growth of Cotton Cultivars in Response to High Temperature. Annals of Botany, 2005, 96, 59-67.	2.9	214
5	Interactive effects of carbon dioxide, temperature, and ultraviolet-B radiation on soybean (Glycine) Tj ETQq1 1 C Experimental Botany, 2005, 56, 725-736.).784314 r 4.8	gBT /Overloc 203
6	Corn (Zea mays L.) growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance properties as affected by nitrogen supply. Plant and Soil, 2003, 257, 205-218.	3.7	169
7	Influence of High Temperature and Breeding for Heat Tolerance in Cotton: A Review. Advances in Agronomy, 2007, 93, 313-385.	5.2	167
8	Effects of Ultraviolet-B Radiation on Cotton (Gossypium hirsutum L.) Morphology and Anatomy. Annals of Botany, 2003, 91, 817-826.	2.9	165
9	Statistical Estimation of Daily Maximum and Minimum Air Temperatures from MODIS LST Data over the State of Mississippi. GIScience and Remote Sensing, 2006, 43, 78-110.	5.9	160
10	Pollenâ€Based Screening of Soybean Genotypes for High Temperatures. Crop Science, 2007, 47, 219-231.	1.8	157
11	Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata [L.] Walp.) under drought. Journal of Photochemistry and Photobiology B: Biology, 2011, 105, 40-50.	3.8	156
12	Reflectance indices with precision and accuracy in predicting cotton leaf nitrogen concentration. Crop Science, 2000, 40, 1814-1819.	1.8	154
13	Yield and fiber quality of Upland cotton as influenced by nitrogen and potassium nutrition. European Journal of Agronomy, 2006, 24, 282-290.	4.1	148
14	Narrowâ€Waveband Reflectance Ratios for Remote Estimation of Nitrogen Status in Cotton. Journal of Environmental Quality, 2002, 31, 1442-1452.	2.0	144
15	Temperature Effects on Cotton Fruit Retention. Agronomy Journal, 1992, 84, 26-30.	1.8	129
16	Temperature Regime and Carbon Dioxide Enrichment Alter Cotton Boll Development and Fiber Properties. Agronomy Journal, 1999, 91, 851-858.	1.8	124
17	Interactive effects of elevated CO2 and potassium deficiency on photosynthesis, growth, and biomass partitioning of cotton. Field Crops Research, 2005, 94, 201-213.	5.1	118
18	Growth and physiological responses of cotton (Gossypium hirsutum L.) to elevated carbon dioxide and ultraviolet-B radiation under controlled environmental conditions. Plant, Cell and Environment, 2003, 26, 771-782.	5.7	113

#	Article	IF	CITATIONS
19	Temperature Effects on Early Season Cotton Growth and Development. Agronomy Journal, 1992, 84, 229-237.	1.8	108
20	Senescence and hyperspectral reflectance of cotton leaves exposed to ultraviolet-B radiation and carbon dioxide. Physiologia Plantarum, 2004, 121, 250-257.	5.2	103
21	Soybean seed physiology, quality, and chemical composition under soil moisture stress. Food Chemistry, 2019, 278, 92-100.	8.2	98
22	Selection of Optimum Reflectance Ratios for Estimating Leaf Nitrogen and Chlorophyll Concentrations of Field-Grown Cotton. Agronomy Journal, 2005, 97, 89-98.	1.8	88
23	Canopy reflectance in cotton for growth assessment and lint yield prediction. European Journal of Agronomy, 2007, 26, 335-344.	4.1	88
24	Crop Modeling and Applications: A Cotton Example. Advances in Agronomy, 1997, , 225-290.	5.2	87
25	Effects of carbon dioxide, temperature and ultraviolet-B radiation and their interactions on soybean (Glycine max L.) growth and development. Environmental and Experimental Botany, 2007, 60, 1-10.	4.2	85
26	A Comparison of Scenarios for the Effect of Global Climate Change on Cotton Growth and Yield. Functional Plant Biology, 1997, 24, 707.	2.1	78
27	Interactive Effects of Carbon Dioxide and Nitrogen Nutrition on Cotton Growth, Development, Yield, and Fiber Quality. Agronomy Journal, 2004, 96, 1148-1157.	1.8	76
28	Carbon dioxide enrichment and temperature effects on cotton canopy photosynthesis, transpiration, and water-use efficiency. Field Crops Research, 1995, 41, 13-23.	5.1	75
29	Simulating the impacts of climate change on cotton production in the Mississippi Delta. Climate Research, 2002, 22, 271-281.	1.1	75
30	Temperature Effect on Growth and Development of Cotton During the Fruiting Period. Agronomy Journal, 1991, 83, 211-217.	1.8	74
31	Temperature Effects on Pima Cotton Growth and Development. Agronomy Journal, 1992, 84, 237-243.	1.8	73
32	Nitrogen nutrition and photosynthesis in leaves of Pima cotton ¹ . Journal of Plant Nutrition, 1996, 19, 755-770.	1.9	73
33	Interactions of CO2 enrichment and temperature on cotton growth and leaf characteristics. Environmental and Experimental Botany, 1998, 39, 117-129.	4.2	73
34	Interactive Effects of Ultraviolet-B Radiation and Temperature on Cotton Physiology, Growth, Development and Hyperspectral Reflectance¶. Photochemistry and Photobiology, 2004, 79, 416.	2.5	72
35	Impacts of Changing Climate and Climate Variability on Seed Production and Seed Industry. Advances in Agronomy, 2013, , 49-110.	5.2	71
36	Screening Capsicum species of different origins for high temperature tolerance by in vitro pollen germination and pollen tube length. Scientia Horticulturae, 2007, 112, 130-135.	3.6	70

#	Article	IF	CITATIONS
37	Drought stress has transgenerational effects on soybean seed germination and seedling vigor. PLoS ONE, 2019, 14, e0214977.	2.5	65
38	Soybean (Glycine max) Pollen Germination Characteristics, Flower and Pollen Morphology in Response to Enhanced Ultraviolet-B Radiation. Annals of Botany, 2004, 94, 855-864.	2.9	64
39	Evaluating rice for salinity using pot-culture provides a systematic tolerance assessment at the seedling stage. Rice, 2019, 12, 57.	4.0	64
40	Physiological causes of cotton fruit abscission under conditions of high temperature and enhanced ultraviolet-B radiation. Physiologia Plantarum, 2005, 124, 189-199.	5.2	62
41	Photosynthesis, fluorescence, shoot biomass and seed weight responses of three cowpea (Vigna) Tj ETQq1 1 0.78 Experimental Botany, 2009, 66, 160-171.	34314 rgB ⁻ 4.2	Г /Overloc 62
42	Mepiquat chloride (PIX)-induced changes in photosynthesis and growth of cotton. Plant Growth Regulation, 1996, 20, 179-183.	3.4	59
43	Leaf and canopy photosynthetic characteristics of cotton (Gossypium hirsutum) under elevated CO2 concentration and UV-B radiation. Journal of Plant Physiology, 2004, 161, 581-590.	3.5	57
44	Quantifying Temperature Effects on Cotton Reproductive Efficiency and Fiber Quality. Agronomy Journal, 2014, 106, 1275-1282.	1.8	56
45	Assessment of Cold and Heat Tolerance of Winter-grown Canola (Brassica napus L.) Cultivars by Pollen-based Parameters. Journal of Agronomy and Crop Science, 2008, 194, 225-236.	3.5	55
46	Screening Corn Hybrids for Cold Tolerance using Morphological Traits for Early‣eason Seeding. Crop Science, 2015, 55, 851-867.	1.8	55
47	Modeling Temperature Effects on Cotton Internode and Leaf Growth. Crop Science, 1997, 37, 503-509.	1.8	53
48	Evaluating Soybean Cultivars for Low- and High-Temperature Tolerance During the Seedling Growth Stage. Agronomy, 2019, 9, 13.	3.0	53
49	Interactive effects on CO2, drought, and ultraviolet-B radiation on maize growth and development. Journal of Photochemistry and Photobiology B: Biology, 2016, 160, 198-209.	3.8	52
50	Temperature Effects on Cotton Seedling Emergence, Growth, and Development. Agronomy Journal, 2017, 109, 1379-1387.	1.8	52
51	Screening of Rice Cultivars for Morpho-Physiological Responses to Early-Season Soil Moisture Stress. Rice Science, 2017, 24, 322-335.	3.9	52
52	Carbon dioxide and temperature effects on pima cotton growth. Agriculture, Ecosystems and Environment, 1995, 54, 17-29.	5.3	50
53	Cowpea (Vigna unguiculata [L.] Walp.) genotypes response to multiple abiotic stresses. Journal of Photochemistry and Photobiology B: Biology, 2010, 100, 135-146.	3.8	48
54	Reproductive and Fiber Quality Responses of Upland Cotton to Moisture Deficiency. Agronomy Journal, 2014, 106, 1060-1069.	1.8	47

#	Article	IF	CITATIONS
55	Mepiquat Chloride and Temperature Effects on Photosynthesis and Respiration of Fruiting Cotton. Crop Science, 1991, 31, 1302-1308.	1.8	46
56	Spectral reflectance curves to distinguish soybean from common cocklebur (Xanthium strumarium) and sicklepod (Cassia obtusifolia) grown with varying soil moisture. Weed Science, 2004, 52, 788-796.	1.5	46
57	Physiological assessment of water deficit in soybean using midday leaf water potential and spectral features. Journal of Plant Interactions, 2019, 14, 533-543.	2.1	46
58	Growth, developmental, and physiological responses of two sweetpotato (Ipomoea batatas L. [Lam]) cultivars to early season soil moisture deficit. Scientia Horticulturae, 2014, 168, 218-228.	3.6	45
59	Cotton responses to ultraviolet-B radiation: experimentation and algorithm development. Agricultural and Forest Meteorology, 2003, 120, 249-265.	4.8	44
60	Remote Sensing to Detect Herbicide Drift on Crops. Weed Technology, 2004, 18, 358-368.	0.9	44
61	Quantifying soil moisture deficit effects on soybean yield and yield component distribution patterns. Irrigation Science, 2018, 36, 241-255.	2.8	43
62	Quantifying nitrogen effects on castor bean (Ricinus communis L.) development, growth, and photosynthesis. Industrial Crops and Products, 2010, 31, 185-191.	5.2	42
63	Crop Responses to Elevated Carbon Dioxide and Interactions with Temperature. Journal of Crop Improvement, 2005, 13, 157-191.	1.7	40
64	Proteomics, physiological, and biochemical analysis of cross tolerance mechanisms in response to heat and water stresses in soybean. PLoS ONE, 2020, 15, e0233905.	2.5	40
65	Carbon Dioxide and Temperature Effects on Pima Cotton Development. Agronomy Journal, 1995, 87, 820-826.	1.8	38
66	Deriving a Simple Spectral Reflectance Ratio to Determine Cotton Leaf Water Potential. Journal of New Seeds, 2007, 8, 11-27.	0.3	38
67	Genotypic variability among cotton cultivars for heat and drought tolerance using reproductive and physiological traits. Euphytica, 2018, 214, 1.	1.2	37
68	Quantifying Storage Root Initiation, Growth, and Developmental Responses of Sweetpotato to Early Season Temperature. Agronomy Journal, 2014, 106, 1795-1804.	1.8	36
69	Assessing morphological characteristics of elite cotton lines from different breeding programmes for low temperature and drought tolerance. Journal of Agronomy and Crop Science, 2018, 204, 467-476.	3.5	35
70	Quantifying Corn Growth and Physiological Responses to Ultravioletâ€B Radiation for Modeling. Agronomy Journal, 2013, 105, 1367-1377.	1.8	34
71	Carbon dioxide and temperature interactions on stem extension, node initiation, and fruiting in cotton. Agriculture, Ecosystems and Environment, 1995, 55, 17-28.	5.3	33
72	Screening Ornamental Pepper Cultivars for Temperature Tolerance Using Pollen and Physiological Parameters. Hortscience: A Publication of the American Society for Hortcultural Science, 2011, 46, 878-884.	1.0	33

#	Article	IF	CITATIONS
73	Photosynthesis and fluorescence responses of C ₄ plant Andropogon gerardii acclimated to temperature and carbon dioxide. Photosynthetica, 2008, 46, 420-430.	1.7	32
74	Developing functional relationships between temperature and soybean yield and seed quality. Agronomy Journal, 2020, 112, 194-204.	1.8	31
75	Growth and physiological trait variation among corn hybrids for cold tolerance. Canadian Journal of Plant Science, 0, , 639-656.	0.9	29
76	Interactive effects of carbon dioxide, low temperature, and ultraviolet-B radiation on cotton seedling root and shoot morphology and growth. Frontiers of Earth Science, 2016, 10, 607-620.	2.1	29
77	Crop ecosystem responses to climatic change: cotton , 2000, , 161-187.		28
78	Developing and Validating a Model for a Plant Growth Regulator. Agronomy Journal, 1995, 87, 1100-1105.	1.8	26
79	Low and high-temperature effects on sweetpotato storage root initiation and early transplant establishment. Scientia Horticulturae, 2018, 240, 38-48.	3.6	26
80	Early-season Soil Moisture Deficit Reduces Sweetpotato Storage Root Initiation and Development. Hortscience: A Publication of the American Society for Hortcultural Science, 2013, 48, 1457-1462.	1.0	26
81	Temperature Effects on Pima Cotton Leaf Growth. Agronomy Journal, 1993, 85, 681-686.	1.8	25
82	Sweetpotato Responses to Mid―and Lateâ€Season Soil Moisture Deficits. Crop Science, 2016, 56, 1865-1877.	1.8	25
83	Title is missing!. Plant Growth Regulation, 1998, 26, 33-40.	3.4	24
84	Switchgrass (Panicum virgatum L.) Intraspecific Variation and Thermotolerance Classification Using in Vitro Seed Germination Assay. American Journal of Plant Sciences, 2011, 02, 134-147.	0.8	23
85	Title is missing!. Climatic Change, 2003, 60, 99-129.	3.6	22
86	Uniformity of Soil-Plant-Atmosphere-Research Chambers. Transactions of the ASABE, 2009, 52, 1721-1731.	1.1	22
87	Quantifying Growth and Developmental Responses of Sweetpotato to Mid―and Late eason Temperature. Agronomy Journal, 2015, 107, 1854-1862.	1.8	21
88	Temperature Effects on the Shoot and Root Growth, Development, and Biomass Accumulation of Corn (Zea mays L.). Agriculture (Switzerland), 2022, 12, 443.	3.1	20
89	Assessing genotypic variability of cowpea (Vigna unguiculata [L.] Walp.) to current and projected ultraviolet-B radiation. Journal of Photochemistry and Photobiology B: Biology, 2008, 93, 71-81.	3.8	19
90	Maize growth and developmental responses to temperature and ultraviolet-B radiation interaction. Photosynthetica, 2014, 52, 262-271.	1.7	19

#	Article	IF	CITATIONS
91	Physical Modeling of U.S. Cotton Yields and Climate Stresses during 1979 to 2005. Agronomy Journal, 2012, 104, 675-683.	1.8	18
92	Developing a Screening Tool for Osmotic Stress Tolerance Classification of Rice Cultivars Based on In Vitro Seed Germination. Crop Science, 2017, 57, 387-394.	1.8	17
93	Morpho-Physiological Characterization of Diverse Rice Genotypes for Seedling Stage High- and Low-Temperature Tolerance. Agronomy, 2021, 11, 112.	3.0	17
94	Temperature response of C4 species big bluestem (Andropogon gerardii) is modified by growing carbon dioxide concentration. Environmental and Experimental Botany, 2007, 61, 281-290.	4.2	16
95	A Distributed Cotton Growth Model Developed from GOSSYM and Its Parameter Determination. Agronomy Journal, 2012, 104, 661-674.	1.8	16
96	Elevated carbon dioxide and drought modulate physiology and storage-root development in sweet potato by regulating microRNAs. Functional and Integrative Genomics, 2019, 19, 171-190.	3.5	16
97	Drought Stress Tolerance Screening of Elite American Breeding Rice Genotypes Using Low-Cost Pre-Fabricated Mini-Hoop Modules. Agronomy, 2019, 9, 199.	3.0	15
98	Yield, Physiological Performance, and Phytochemistry of Basil (Ocimum basilicum L.) under Temperature Stress and Elevated CO2 Concentrations. Plants, 2021, 10, 1072.	3.5	15
99	Ultraviolet (UV) B effects on growth and yield of three contrasting sweet potato cultivars. Photosynthetica, 2020, 58, 37-44.	1.7	15
100	Growth responses of cotton to aldicarb and temperature. Environmental and Experimental Botany, 1997, 38, 39-48.	4.2	14
101	Water Deficit Effects on Soybean Root Morphology and Early-Season Vigor. Agronomy, 2019, 9, 836.	3.0	13
102	Drought and Elevated CO2 Impacts Photosynthesis and Biochemicals of Basil (Ocimum basilicum L.). Stresses, 2021, 1, 223-237.	4.8	13
103	Drought, Low Nitrogen Stress, and Ultraviolet-B Radiation Effects on Growth, Development, and Physiology of Sweetpotato Cultivars during Early Season. Genes, 2022, 13, 156.	2.4	13
104	High-Temperature and Drought-Resilience Traits among Interspecific Chromosome Substitution Lines for Genetic Improvement of Upland Cotton. Plants, 2020, 9, 1747.	3.5	12
105	Ultraviolet-B Radiation Alters Soybean Growth and Seed Quality. Food and Nutrition Sciences (Print), 2016, 07, 55-66.	0.4	12
106	Developing Functional Relationships between Soil Waterlogging and Corn Shoot and Root Growth and Development. Plants, 2021, 10, 2095.	3.5	12
107	Morpho-Physiological, Yield, and Transgenerational Seed Germination Responses of Soybean to Temperature. Frontiers in Plant Science, 2022, 13, 839270.	3.6	11
108	Response of bahiagrass carbon assimilation and photosystem activity to below optimum temperatures. Functional Plant Biology, 2008, 35, 1243.	2.1	10

#	Article	IF	CITATIONS
109	Comparative Proteomic Analysis of Cotton Fiber Development and Protein Extraction Method Comparison in Late Stage Fibers. Proteomes, 2016, 4, 7.	3.5	10
110	Interactive Impacts of Temperature and Elevated CO2 on Basil (Ocimum basilicum L.) Root and Shoot Morphology and Growth. Horticulturae, 2021, 7, 112.	2.8	10
111	Cotton responses to nitrogen, carbon dioxide, and temperature interactions. Soil Science and Plant Nutrition, 1997, 43, 1125-1130.	1.9	9
112	Remote Sensing to Distinguish Soybean from Weeds After Herbicide Application. Weed Technology, 2004, 18, 594-604.	0.9	9
113	Using MODIS LST data for high-resolution estimates of daily air temperature over Mississippi. , 0, , .		9
114	Harvest Frequency and Nitrogen Effects on Yield, Chemical Characteristics, and Nutrient Removal of Switchgrass. Agronomy Journal, 2014, 106, 1805-1816.	1.8	9
115	Developing functional relationships between temperature and cover crop species vegetative growth and development. Agronomy Journal, 2021, 113, 1333-1348.	1.8	9
116	Physiological and pollen-based screening of shrub roses for hot and drought environments. Scientia Horticulturae, 2021, 282, 110062.	3.6	9
117	Alterations in the leaf lipidome of Brassica carinata under high-temperature stress. BMC Plant Biology, 2021, 21, 404.	3.6	9
118	Exploring the Use of the Environmental Productivity Index Concept for Crop Production and Modeling. Advances in Agricultural Systems Modeling, 0, , 387-410.	0.3	9
119	MINERAL DEFICIENCY STRESS: Reflectance Properties, Leaf Photosynthesis and Growth of Nitrogen Deficient Big Bluestem (<i>Andropogon gerardii</i>). Journal of Agronomy and Crop Science, 2010, 196, 379-390.	3.5	8
120	Parental Environmental Effects on Seed Quality and Germination Response to Temperature of Andropogon gerardii. Agronomy, 2019, 9, 304.	3.0	8
121	Remote sensing algorithms for castor bean nitrogen and pigment assessment for fertility management. Industrial Crops and Products, 2010, 32, 411-419.	5.2	7
122	Projected day/night temperatures specifically limits rubisco activity and electron transport in diverse rice cultivars. Environmental and Experimental Botany, 2019, 159, 191-199.	4.2	7
123	Assessment of solar radiation models and temporal averaging schemes in predicting radiation and cotton production in the southern United States. Climate Research, 2004, 27, 85-103.	1.1	7
124	Preliminary results of the coupled CWRF-GOSSYM system. , 2005, 5884, 68.		6
125	Physiological Simulation of Cotton Growth and Yield. , 2010, , 318-331.		6
126	Morph-physiological responses of cotton interspecific chromosome substitution lines to low temperature and drought stresses. Euphytica, 2018, 214, 1.	1.2	6

#	Article	IF	CITATIONS
127	Assessment of agro-morphological, physiological and yield traits diversity among tropical rice. PeerJ, 2021, 9, e11752.	2.0	6
128	Effect of Enhanced UV-B Radiation on Reniform Nematode (Rotylenchus reniformis Linford and) Tj ETQqO 0 0 rgB	T (Overloc	k 10 Tf 50 70
129	Quantifying and Validating Soybean Seed Emergence Model as a Function of Temperature. American Journal of Plant Sciences, 2019, 10, 111-124.	0.8	6
130	Drought and Elevated Carbon Dioxide Impact the Morphophysiological Profile of Basil (Ocimum) Tj ETQq0 0 0 rgB	BT /Overloo 1.4	ck 10 Tf 50 6
131	Photoacoustic Study of Nutritional Deficiencies in Cotton Plants. Instrumentation Science and Technology, 2003, 31, 231-247.	1.8	5
132	Harvesting Effects on Species Composition and Distribution of Cover Attributes in Mixed Native Warm-Season Grass Stands. Environments - MDPI, 2015, 2, 167-185.	3.3	5
133	Cotton Crop Responses to a Changing Environment. ASA Special Publication, 0, , 3-30.	0.8	5
134	S-metolachlor and rainfall effects on sweetpotato (Ipomoea batatas L. [Lam]) growth and development. Scientia Horticulturae, 2015, 185, 98-104.	3.6	5
135	EarlySeason Morphological and Physiological Responses of Resistant and Susceptible Cotton Genotypes to Reniform Nematode and Soil Nitrogen. Agronomy, 2020, 10, 1974.	3.0	5
136	Applications of a Cotton Simulation Model, GOSSYM, for Crop Management, Economic, and Policy Decisions. , 2002, , .		5
137	Interactive Effects of Ultravioletâ€B Radiation and Temperature on Cotton Physiology, Growth, Development and Hyperspectral Reflectance [¶] . Photochemistry and Photobiology, 2004, 79, 416-427.	2.5	4
138	In vitro seed germination response of corn hybrids to osmotic stressÂconditions. , 2020, 3, e20087.		4

139	Effects of Ultraviolet-B Radiation and Its Interactions with Climate Change Factors on Agricultural Crop Growth and Yield. , 2010, , 395-436.		4	
140	Cotton responses to nitrogen, carbon dioxide, and temperature interactions. , 1997, , 867-872.		4	
141	Phenotyping of Southern United States Soybean Cultivars for Potential Seed Weight and Seed Quality Compositions. Agronomy, 2022, 12, 839.	3.0	4	
142	Silicon Enhances Plant Vegetative Growth and Soil Water Retention of Soybean (Glycine max) Plants under Water-Limiting Conditions. Plants, 2022, 11, 1687.	3.5	4	
143	Exploring the Limitations for Cotton Growth and Yield. Journal of New Seeds, 2007, 8, 1-22.	0.3	3	
144	Alteration of root and shoot morphologies by interspecific replacement of individual Upland cotton chromosome or chromosome segment pairs. Euphytica, 2021, 217, 1.	1.2	3	

#	Article	IF	CITATIONS
145	Agronomic characterization of cotton genotypes susceptible and resistant to reniform nematode in the United States Midsouth. Agronomy Journal, 2021, 113, 4280-4291.	1.8	3
146	Developing functional relationships between sesame growth, development, and nitrogen nutrition during early season. , 2021, 4, e20198.		3
147	PLANTS AND THE ENVIRONMENT Ozone Depletion. , 2003, , 749-756.		3
148	MODELING AND VALIDATING COTTON LEAF AREA DEVELOPMENT AND STEM ELONGATION. Acta Horticulturae, 2002, , 193-199.	0.2	3
149	Estimating cotton growth and developmental parameters through remote sensing. , 2004, 5153, 277.		2
150	Effects of CO ₂ and Temperature on Crops: Lessons from SPAR Growth Chambers. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2010, , 55-86.	0.4	2
151	Remote-sensing algorithms for estimating nitrogen uptake and nitrogen-use efficiency in cotton. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2010, 60, 500-509.	0.6	2
152	Wildlife Habitat Quality (Sward Structure and Ground Cover) Response of Mixed Native Warm-Season Grasses to Harvesting. Environments - MDPI, 2014, 1, 75-91.	3.3	2
153	First Harvest Timing and Nitrogen Application Rate Effects on Chemical Composition and Ethanol Yield of Switchgrass. Crop, Forage and Turfgrass Management, 2016, 2, 1-16.	0.6	2
154	Ozone Depletion. , 2017, , 318-326.		2
155	Individual and Interactive Temporal Implications of UV-B Radiation and Elevated CO2 on the Morphology of Basil (Ocimum basilicum L.). Horticulturae, 2021, 7, 474.	2.8	2
156	Low- and High-Temperature Phenotypic Diversity of Brassica carinata Genotypes for Early-Season Growth and Development. Frontiers in Plant Science, 0, 13, .	3.6	2
157	Spatial Scale Effects of Climate Scenarios on Simulated Cotton Production in the Southeastern U.S.A , 2003, , 99-129.		1
158	Interactive effects of atmospheric carbon dioxide and ultraviolet-B radiation on cotton growth and physiology. , 2003, 5156, 262.		1
159	Genotypic variation of soybean and cotton crops in their response to UV-B radiation for vegetative growth and physiology. , 2005, 5886, 156.		1
160	Harvest timing and N application rate effects on switchgrass yield, nutrient cycling, and partitioning. Journal of Plant Nutrition, 2017, 40, 1261-1276.	1.9	1
161	Individual and Interactive Effects of Multiple Abiotic Stress Treatments on Early-Season Growth and Development of Two Brassica Species. Agriculture (Switzerland), 2022, 12, 453.	3.1	1
162	PREDICTION OF SOLAR RADIATION FROM AIR TEMPERATURE. Acta Horticulturae, 2002, , 209-217.	0.2	0

#	Article	IF	CITATIONS
163	Plant health sensing system for determining nitrogen status in plants. , 2004, , .		0
164	Preliminary results of a UV-B effect incorporated GOSSYM model. , 2006, , .		0
165	Implications of Experimental Design on Predicting Economic Optimum Nitrogen Rates in Rice. Agronomy, 2021, 11, 2296.	3.0	0