
Cheng-Ting Chien

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6179289/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 9578-9582.	3.3	1,493
2	Elimination of false positives that arise in using the two-hybrid system. BioTechniques, 1993, 14, 920-4.	0.8	385
3	Targeting of SIR1 protein establishes transcriptional silencing at HM loci and telomeres in yeast. Cell, 1993, 75, 531-541.	13.5	212
4	A Hedgehog-Induced BTB Protein Modulates Hedgehog Signaling by Degrading Ci/Cli Transcription Factor. Developmental Cell, 2006, 10, 719-729.	3.1	205
5	Distinct protein degradation mechanisms mediated by Cul1 and Cul3 controlling Ci stability in Drosophila eye development. Genes and Development, 2002, 16, 2403-2414.	2.7	167
6	Neddylation and deneddylation regulate Cul1 and Cul3 protein accumulation. Nature Cell Biology, 2005, 7, 1014-1020.	4.6	154
7	Functional cooperation between FACT and MCM helicase facilitates initiation of chromatin DNA replication. EMBO Journal, 2006, 25, 3975-3985.	3.5	153
8	<i>LRRK2</i> G2019S Mutation Induces Dendrite Degeneration through Mislocalization and Phosphorylation of Tau by Recruiting Autoactivated GSK3β. Journal of Neuroscience, 2010, 30, 13138-13149.	1.7	153
9	F-box proteins: the key to protein degradation. Journal of Biomedical Science, 2006, 13, 181-191.	2.6	131
10	Neuronal type information encoded in the basic-helix-loop-helix domain of proneural genes. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 13239-13244.	3.3	119
11	The utility F-box for protein destruction. Cellular and Molecular Life Sciences, 2008, 65, 1977-2000.	2.4	116
12	Foxp2 controls synaptic wiring of corticostriatal circuits and vocal communication by opposing Mef2c. Nature Neuroscience, 2016, 19, 1513-1522.	7.1	99
13	The Proneural Gene amos Promotes Multiple Dendritic Neuron Formation in the Drosophila Peripheral Nervous System. Neuron, 2000, 25, 57-67.	3.8	98
14	Numb-Associated Kinase Interacts with the Phosphotyrosine Binding Domain of Numb and Antagonizes the Function of Numb In Vivo. Molecular and Cellular Biology, 1998, 18, 598-607.	1.1	72
15	DAPK activates MARK1/2 to regulate microtubule assembly, neuronal differentiation, and tau toxicity. Cell Death and Differentiation, 2011, 18, 1507-1520.	5.0	67
16	Transcriptional Activation upon Pheromone Stimulation Mediated by a Small Domain of <i>Saccharomyces cerevisiae</i> Ste12p. Molecular and Cellular Biology, 1997, 17, 6410-6418.	1.1	62
17	Protection of cullin–RING E3 ligases by CSN–UBP12. Trends in Cell Biology, 2006, 16, 362-369.	3.6	56
18	Cell cycle roles for two 14-3-3 proteins during <i>Drosophila</i> development. Journal of Cell Science, 2001, 114, 3445-3454.	1.2	56

CHENG-TING CHIEN

#	Article	IF	CITATIONS
19	DEN1 deneddylates non-cullin proteins in vivo. Journal of Cell Science, 2008, 121, 3218-3223.	1.2	53
20	Negative regulation of atonal in proneural cluster formation of Drosophila R8 photoreceptors. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 5055-5060.	3.3	52
21	Scabrous Controls Ommatidial Rotation in the Drosophila Compound Eye. Developmental Cell, 2002, 3, 839-850.	3.1	50
22	Lrrk regulates the dynamic profile of dendritic Golgi outposts through the golgin Lava lamp. Journal of Cell Biology, 2015, 210, 471-483.	2.3	46
23	Lovastatin protects neurite degeneration in <i>LRRK2-G2019S</i> parkinsonism through activating the Akt/Nrf pathway and inhibiting GSK3β activity. Human Molecular Genetics, 2016, 25, 1965-1978.	1.4	45
24	Actin blobs prefigure dendrite branching sites. Journal of Cell Biology, 2018, 217, 3731-3746.	2.3	44
25	Cell cycle roles for two 14-3-3 proteins during Drosophila development. Journal of Cell Science, 2001, 114, 3445-54.	1.2	42
26	Activity-dependent retrograde laminin A signaling regulates synapse growth at <i>Drosophila</i> neuromuscular junctions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17699-17704.	3.3	40
27	A dual function ofphyllopodinDrosophilaexternal sensory organ development: cell fate specification of sensory organ precursor and its progeny. Development (Cambridge), 2001, 128, 2699-2710.	1.2	36
28	Control of protein degradation by E3 ubiquitin ligases in Drosophila eye development. Trends in Genetics, 2003, 19, 382-389.	2.9	35
29	phyllopod is a target gene of proneural proteins in Drosophila external sensory organ development. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8378-8383.	3.3	34
30	The COP9 Signalosome Is Required for Light-Dependent Timeless Degradation and Drosophila Clock Resetting. Journal of Neuroscience, 2009, 29, 1152-1162.	1.7	33
31	Fak56 functions downstream of integrin alphaPS3betanu and suppresses MAPK activation in neuromuscular junction growth. Neural Development, 2008, 3, 26.	1.1	31
32	Neurofibromin Mediates FAK Signaling in Confining Synapse Growth at <i>Drosophila</i> Neuromuscular Junctions. Journal of Neuroscience, 2012, 32, 16971-16981.	1.7	26
33	Nak Regulates Localization of Clathrin Sites in Higher-Order Dendrites to Promote Local Dendrite Growth. Neuron, 2011, 72, 285-299.	3.8	25
34	Beyond being innervated: the epidermis actively shapes sensory dendritic patterning. Open Biology, 2019, 9, 180257.	1.5	25
35	Cell-Autonomous Regulation of Dendrite Self-Avoidance by the Wnt Secretory Factor MIG-14/Wntless. Neuron, 2018, 98, 320-334.e6.	3.8	24
36	Suppression of Hedgehog signaling by Cul3 ligases in proliferation control of retinal precursors. Developmental Biology, 2007, 308, 106-119.	0.9	22

CHENG-TING CHIEN

#	Article	IF	CITATIONS
37	The POUâ€domain protein Pdm3 regulates axonal targeting of R neurons in the <i>Drosophila</i> ellipsoid body. Developmental Neurobiology, 2012, 72, 1422-1432.	1.5	22
38	Dynamic expression and cellular localization of the Drosophila 14-3-3ïµ during embryonic development. Mechanisms of Development, 1999, 81, 209-212.	1.7	21
39	Gcm protein degradation suppresses proliferation of glial progenitors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6778-6783.	3.3	21
40	The COP9 Signalosome Converts Temporal Hormone Signaling to Spatial Restriction on Neural Competence. PLoS Genetics, 2014, 10, e1004760.	1.5	20
41	USP5/Leon deubiquitinase confines postsynaptic growth by maintaining ubiquitin homeostasis through Ubiquilin. ELife, 2017, 6, .	2.8	20
42	Glia-derived exosomal miR-274 targets Sprouty in trachea and synaptic boutons to modulate growth and responses to hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24651-24661.	3.3	19
43	The deubiquitinase Leon/USP5 regulates ubiquitin homeostasis during Drosophila development. Biochemical and Biophysical Research Communications, 2014, 452, 369-375.	1.0	17
44	Glial Nrf2 signaling mediates the neuroprotection exerted by Gastrodia elata Blume in Lrrk2-G2019S Parkinson's disease. ELife, 2021, 10, .	2.8	16
45	Getting the edge: neural precursor selection. Journal of Biomedical Science, 2007, 14, 467-473.	2.6	15
46	Epidermis-Derived L1CAM Homolog Neuroglian Mediates Dendrite Enclosure and Blocks Heteroneuronal Dendrite Bundling. Current Biology, 2019, 29, 1445-1459.e3.	1.8	15
47	Cul4 and DDB1 regulate Orc2 localization, BrdU incorporation and Dup stability during gene amplification in <i>Drosophila</i> follicle cells. Journal of Cell Science, 2009, 122, 2393-2401.	1.2	13
48	Dbo/Henji Modulates Synaptic dPAK to Gate Glutamate Receptor Abundance and Postsynaptic Response. PLoS Genetics, 2016, 12, e1006362.	1.5	13
49	Expression of rat hepatic glucokinase in Escherichia coli. Biochemical and Biophysical Research Communications, 1989, 165, 817-825.	1.0	11
50	Nak regulates Dlg basal localization in Drosophila salivary gland cells. Biochemical and Biophysical Research Communications, 2009, 382, 108-113.	1.0	10
51	An Efficient Screen for Cell-Intrinsic Factors Identifies the Chaperonin CCT and Multiple Conserved Mechanisms as Mediating Dendrite Morphogenesis. Frontiers in Cellular Neuroscience, 2020, 14, 577315.	1.8	10
52	The Proto-Oncogene Int6 Is Essential for Neddylation of Cul1 and Cul3 in Drosophila. PLoS ONE, 2008, 3, e2239.	1.1	9
53	LRRK2 Parkinson's disease: from animal models to cellular mechanisms. Reviews in the Neurosciences, 2011, 22, 411-8.	1.4	9
54	Spatially controlled expression of the Drosophila pseudouridine synthase RluA-1. International Journal of Developmental Biology, 2011, 55, 223-227.	0.3	8

CHENG-TING CHIEN

#	Article	IF	CITATIONS
55	CSN-mediated deneddylation differentially modulates Ci155 proteolysis to promote Hedgehog signalling responses. Nature Communications, 2011, 2, 182.	5.8	8
56	Glial response to hypoxia in mutants of NPAS1/3 homolog Trachealess through Wg signaling to modulate synaptic bouton organization. PLoS Genetics, 2019, 15, e1007980.	1.5	8
57	Glial cell adhesive molecule unzipped mediates axon guidance in <i>Drosophila</i> . Developmental Dynamics, 2011, 240, 122-134.	0.8	7
58	The hypoparathyroidism-associated mutation in Drosophila Gcm compromises protein stability and glial cell formation. Scientific Reports, 2017, 7, 39856.	1.6	2
59	Hearing lessons from flies. ELife, 2016, 5, .	2.8	1