
Stefan Jansson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6179273/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray). Science, 2006, 313, 1596-1604.	6.0	3,945
2	A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature, 2000, 403, 391-395.	13.7	1,354
3	The Norway spruce genome sequence and conifer genome evolution. Nature, 2013, 497, 579-584.	13.7	1,303
4	CO/FT Regulatory Module Controls Timing of Flowering and Seasonal Growth Cessation in Trees. Science, 2006, 312, 1040-1043.	6.0	904
5	A guide to the Lhc genes and their relatives in Arabidopsis. Trends in Plant Science, 1999, 4, 236-240.	4.3	611
6	The light-harvesting chlorophyll ab-binding proteins. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1184, 1-19.	0.5	610
7	Populus: A Model System for Plant Biology. Annual Review of Plant Biology, 2007, 58, 435-458.	8.6	549
8	Rapid Regulation of Light Harvesting and Plant Fitness in the Field. Science, 2002, 297, 91-93.	6.0	514
9	PROTON GRADIENT REGULATION5 Is Essential for Proper Acclimation of <i>Arabidopsis</i> Photosystem I to Naturally and Artificially Fluctuating Light Conditions. Plant Cell, 2012, 24, 2934-2948.	3.1	435
10	Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta, 2001, 213, 794-801.	1.6	384
11	A Cellular Timetable of Autumn Senescence. Plant Physiology, 2005, 139, 1635-1648.	2.3	381
12	Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nature Cell Biology, 2005, 7, 1224-1231.	4.6	333
13	The Plant Genome Integrative Explorer Resource: PlantGen <scp>IE</scp> .org. New Phytologist, 2015, 208, 1149-1156.	3.5	282
14	A Populus EST resource for plant functional genomics. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13951-13956.	3.3	278
15	Gene Expression in Autumn Leaves. Plant Physiology, 2003, 131, 430-442.	2.3	271
16	Absence of the Lhcb1 and Lhcb2 proteins of the light-harvesting complex of photosystem II - effects on photosynthesis, grana stacking and fitness. Plant Journal, 2003, 35, 350-361.	2.8	243
17	The Control of Autumn Senescence in European Aspen Â. Plant Physiology, 2009, 149, 1982-1991.	2.3	239
18	The Light-Harvesting Chlorophyll a/b Binding Proteins Lhcb1 and Lhcb2 Play Complementary Roles during State Transitions in Arabidopsis. Plant Cell, 2014, 26, 3646-3660.	3.1	236

#	Article	IF	CITATIONS
19	A transcriptional timetable of autumn senescence. Genome Biology, 2004, 5, R24.	13.9	226
20	Lack of the Light-Harvesting Complex CP24 Affects the Structure and Function of the Grana Membranes of Higher Plant Chloroplasts. Plant Cell, 2006, 18, 3106-3120.	3.1	221
21	The genetics and genomics of the drought response inPopulus. Plant Journal, 2006, 48, 321-341.	2.8	216
22	The <i>Populus</i> Genome Integrative Explorer (PopGenIE): a new resource for exploring the <i>Populus</i> genome. New Phytologist, 2009, 182, 1013-1025.	3.5	208
23	Structure, function and regulation of plant photosystem I. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 335-352.	0.5	198
24	Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests. Global Change Biology, 2004, 10, 995-1008.	4.2	197
25	Isolation and Biochemical Characterization of Monomeric and Dimeric Photosystem II Complexes from Spinach and Their Relevance to the Organisation of Photosystem II In vivo. FEBS Journal, 1997, 243, 422-429.	0.2	188
26	LAMINA: a tool for rapid quantification of leaf size and shape parameters. BMC Plant Biology, 2008, 8, 82.	1.6	181
27	Nearest-Neighbor Analysis of Higher-Plant Photosystem I Holocomplex. Plant Physiology, 1996, 112, 409-420.	2.3	170
28	Chlorophyll a/b-Binding Proteins, Pigment Conversions, and Early Light-Induced Proteins in a Chlorophyll b-less Barley Mutant. Plant Physiology, 1995, 107, 873-883.	2.3	165
29	Insights into Conifer Giga-Genomes. Plant Physiology, 2014, 166, 1724-1732.	2.3	164
30	ADAPTIVE POPULATION DIFFERENTIATION IN PHENOLOGY ACROSS A LATITUDINAL GRADIENT IN EUROPEAN ASPEN (POPULUS TREMULA, L.): A COMPARISON OF NEUTRAL MARKERS, CANDIDATE GENES AND PHENOTYPIC TRAITS. Evolution; International Journal of Organic Evolution, 2007, 61, 2849-2860.	1.1	161
31	Clinal Variation in phyB2, a Candidate Gene for Day-Length-Induced Growth Cessation and Bud Set, Across a Latitudinal Gradient in European Aspen (Populus tremula). Genetics, 2006, 172, 1845-1853.	1.2	156
32	A nomenclature for the genes encoding the chlorophylla/b-binding proteins of higher plants. Plant Molecular Biology Reporter, 1992, 10, 242-253.	1.0	155
33	Antisense Inhibition of the Photosynthetic Antenna Proteins CP29 and CP26: Implications for the Mechanism of Protective Energy Dissipation. Plant Cell, 2001, 13, 1193-1204.	3.1	152
34	Plants lacking the main light-harvesting complex retain photosystem II macro-organization. Nature, 2003, 421, 648-652.	13.7	152
35	Nucleotide Polymorphism and Phenotypic Associations Within and Around the <i>phytochrome B2</i> Locus in European Aspen (<i>Populus tremula</i> , Salicaceae). Genetics, 2008, 178, 2217-2226.	1.2	151
36	Two different strategies for light utilization in photosynthesis in relation to growth and cold acclimation. Plant, Cell and Environment, 2002, 25, 761-771.	2.8	148

#	Article	IF	CITATIONS
37	A unique program for cell death in xylem fibers of <i>Populus</i> stem. Plant Journal, 2009, 58, 260-274.	2.8	147
38	Abundantly and Rarely Expressed Lhc Protein Genes Exhibit Distinct Regulation Patterns in Plants. Plant Physiology, 2006, 140, 793-804.	2.3	146
39	Natural phenological variation in aspen (Populus tremula): the SwAsp collection. Tree Genetics and Genomes, 2008, 4, 279-292.	0.6	140
40	AtFtsH6 is involved in the degradation of the light-harvesting complex II during high-light acclimation and senescence. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13699-13704.	3.3	135
41	Protease gene families in Populus and Arabidopsis. BMC Plant Biology, 2006, 6, 30.	1.6	129
42	EST data suggest that poplar is an ancient polyploid. New Phytologist, 2005, 167, 165-170.	3.5	128
43	The Photosystem II Light-Harvesting Protein Lhcb3 Affects the Macrostructure of Photosystem II and the Rate of State Transitions in <i>Arabidopsis</i> Â Â. Plant Cell, 2009, 21, 3245-3256.	3.1	118
44	Arabidopsisplants grown in the field and climate chambers significantly differ in leaf morphology and photosystem components. BMC Plant Biology, 2012, 12, 6.	1.6	110
45	The Structure of Photosystem II inArabidopsis:Localization of the CP26 and CP29 Antenna Complexesâ€. Biochemistry, 2003, 42, 608-613.	1.2	108
46	Endophytic fungi in European aspen (Populus tremula) leaves—diversity, detection, and a suggested correlation with herbivory resistance. Fungal Diversity, 2010, 41, 17-28.	4.7	106
47	ls Each Light-Harvesting Complex Protein Important for Plant Fitness? Â. Plant Physiology, 2004, 134, 502-509.	2.3	101
48	An Arabidopsis thaliana protein homologous to cyanobacterial high-light-inducible proteins. Plant Molecular Biology, 2000, 42, 345-351.	2.0	93
49	The Properties of the Chlorophyll a/b-Binding Proteins Lhca2 and Lhca3 Studied in Vivo Using Antisense Inhibition. Plant Physiology, 2001, 127, 150-158.	2.3	90
50	Genome-wide profiling of Populus small RNAs. BMC Genomics, 2009, 10, 620.	1.2	90
51	The transcriptome of Populus in elevated CO2. New Phytologist, 2005, 167, 143-154.	3.5	88
52	Genetic Differentiation, Clinal Variation and Phenotypic Associations With Growth Cessation Across the <i>Populus tremula</i> Photoperiodic Pathway. Genetics, 2010, 186, 1033-1044.	1.2	86
53	Greening under High Light or Cold Temperature Affects the Level of Xanthophyll-Cycle Pigments, Early Light-Inducible Proteins, and Light-Harvesting Polypeptides in Wild-Type Barley and theChlorina f2Mutant1. Plant Physiology, 1999, 120, 193-204.	2.3	85
54	The Role of Lhca Complexes in the Supramolecular Organization of Higher Plant Photosystem I. Journal of Biological Chemistry, 2009, 284, 7803-7810.	1.6	85

#	Article	IF	CITATIONS
55	Functional and evolutionary genomic inferences in <i>Populus</i> through genome and population sequencing of American and European aspen. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10970-E10978.	3.3	84
56	Production of superoxide from Photosystem II in a rice (Oryza sativaL.) mutant lacking PsbS. BMC Plant Biology, 2014, 14, 242.	1.6	83
57	Winter acclimation of PsbS and related proteins in the evergreen Arctostaphylos uva-ursi as influenced by altitude and light environment. Plant, Cell and Environment, 2006, 29, 869-878.	2.8	80
58	Modulation of PsbS and flexible vs sustained energy dissipation by light environment in different species. Physiologia Plantarum, 2006, 127, 670-680.	2.6	78
59	Title is missing!. Photosynthesis Research, 1997, 52, 127-136.	1.6	77
60	A major locus controls local adaptation and adaptive life history variation in a perennial plant. Genome Biology, 2018, 19, 72.	3.8	76
61	An intact light harvesting complex I antenna system is required for complete state transitions in Arabidopsis. Nature Plants, 2015, 1, 15176.	4.7	74
62	Lhca5 – an LHC-Type Protein Associated with Photosystem I. Plant Molecular Biology, 2004, 54, 641-651.	2.0	73
63	Antenna protein composition of PS I and PS II in thylakoid sub-domains. Biochimica Et Biophysica Acta - Bioenergetics, 1997, 1320, 297-309.	0.5	72
64	Type I and Type II genes for the chlorophyll a/b-binding protein in the gymnosperm Pinus sylvestris (Scots pine): cDNA cloning and sequence analysis. Plant Molecular Biology, 1990, 14, 287-296.	2.0	71
65	A genomic approach to investigate developmental cell death in woody tissues of Populus trees. Genome Biology, 2005, 6, R34.	13.9	71
66	Genetic Variation in Functional Traits Influences Arthropod Community Composition in Aspen (Populus tremula L.). PLoS ONE, 2012, 7, e37679.	1.1	70
67	Hierarchy amongst photosynthetic acclimation responses for plant fitness. Physiologia Plantarum, 2006, 129, 455-459.	2.6	67
68	Orthogonal projections to latent structures as a strategy for microarray data normalization. BMC Bioinformatics, 2007, 8, 207.	1.2	67
69	Improper excess light energy dissipation in Arabidopsis results in a metabolic reprogramming. BMC Plant Biology, 2009, 9, 12.	1.6	66
70	Structure of the Higher Plant Light Harvesting Complex I:Â In Vivo Characterization and Structural Interdependence of the Lhca Proteinsâ€. Biochemistry, 2005, 44, 3065-3073.	1.2	65
71	Antisense Inhibition of the Photosystem I Antenna Protein Lhca4 in Arabidopsis thaliana. Plant Physiology, 1997, 115, 1525-1531.	2.3	64
72	Geographic structure in metabolome and herbivore community coâ€occurs with genetic structure in plant defence genes. Ecology Letters, 2013, 16, 791-798.	3.0	63

#	Article	IF	CITATIONS
73	Very rapid phosphorylation kinetics suggest a unique role for <scp>L</scp> hcb2 during state transitions in <scp>A</scp> rabidopsis. Plant Journal, 2013, 76, 236-246.	2.8	62
74	Darkened Leaves Use Different Metabolic Strategies for Senescence and Survival. Plant Physiology, 2018, 177, 132-150.	2.3	62
75	Fitness analyses of <i>Arabidopsis thaliana</i> mutants depleted of FtsH metalloproteases and characterization of three FtsH6 deletion mutants exposed to high light stress, senescence and chilling. New Phytologist, 2011, 191, 449-458.	3.5	56
76	Identification of Lhcb1/Lhcb2/Lhcb3 heterotrimers of the main light-harvesting chlorophyll a/b–protein complex of Photosystem II (LHC II). Biochimica Et Biophysica Acta - Bioenergetics, 2001, 1504, 340-345.	0.5	54
77	Metabolic profiling reveals metabolic shifts in <i>Arabidopsis</i> plants grown under different light conditions. Plant, Cell and Environment, 2012, 35, 1824-1836.	2.8	54
78	Stable Accumulation of Photosystem II Requires ONE-HELIX PROTEIN1 (OHP1) of the Light Harvesting-Like Family. Plant Physiology, 2018, 176, 2277-2291.	2.3	54
79	UPSC-BASE -Populustranscriptomics online. Plant Journal, 2006, 48, 806-817.	2.8	53
80	Integrated Analysis of Transcript, Protein and Metabolite Data To Study Lignin Biosynthesis in Hybrid Aspen. Journal of Proteome Research, 2009, 8, 199-210.	1.8	53
81	Direct energy transfer from photosystem II to photosystem I confers winter sustainability in Scots Pine. Nature Communications, 2020, 11, 6388.	5.8	50
82	Fine-Tuning of Photosynthesis Requires CURVATURE THYLAKOID1-Mediated Thylakoid Plasticity. Plant Physiology, 2018, 176, 2351-2364.	2.3	46
83	Populus tremula (European aspen) shows no evidence of sexual dimorphism. BMC Plant Biology, 2014, 14, 276.	1.6	45
84	Plasticity in the Composition of the Light Harvesting Antenna of Higher Plants Preserves Structural Integrity and Biological Function. Journal of Biological Chemistry, 2006, 281, 14981-14990.	1.6	44
85	Lhca5 interaction with plant photosystem I. FEBS Letters, 2006, 580, 6485-6488.	1.3	42
86	Nucleotide distribution in gymnosperm nuclear sequences suggests a model for GC-content change in land-plant nuclear genomes. Journal of Molecular Evolution, 1994, 39, 34-46.	0.8	40
87	Autumn senescence in aspen is not triggered by day length. Physiologia Plantarum, 2018, 162, 123-134.	2.6	40
88	Distinct "Assisted―and "Spontaneous―Mechanisms for the Insertion of Polytopic Chlorophyll-binding Proteins into the Thylakoid Membrane. Journal of Biological Chemistry, 1999, 274, 4715-4721.	1.6	39
89	No Evidence of Geographical Structure of Salicinoid Chemotypes within Populus Tremula. PLoS ONE, 2014, 9, e107189.	1.1	39
90	The Association of the Antenna System to Photosystem I in Higher Plants. Journal of Biological Chemistry, 2005, 280, 31050-31058.	1.6	38

#	Article	IF	CITATIONS
91	The rapidly phosphorylated 25 kDa polypeptide of the light-harvesting complex of Photosystem II is encoded by the Type 2 cab-II genes. Biochimica Et Biophysica Acta - Bioenergetics, 1990, 1019, 110-114.	0.5	37
92	Annotation of a 95-kb Populus deltoides genomic sequence reveals a disease resistance gene cluster and novel class I and class II transposable elements. Theoretical and Applied Genetics, 2004, 109, 10-22.	1.8	37
93	A cross-species transcriptomics approach to identify genes involved in leaf development. BMC Genomics, 2008, 9, 589.	1.2	37
94	Evolutionary conservation of the chlorophyll a/b-binding proteins cDNAs encoding Type I, II and III LHC I polypeptides from the gymnosperm Scots pine. Molecular Genetics and Genomics, 1991, 229, 67-76.	2.4	36
95	Excitation energy trapping in photosystem I complexes depleted in Lhca1 and Lhca4. FEBS Letters, 2005, 579, 4787-4791.	1.3	36
96	Contrasting patterns of cytokinins between years in senescing aspen leaves. Plant, Cell and Environment, 2017, 40, 622-634.	2.8	34
97	Non-Photochemical Quenching Capacity in Arabidopsis thaliana Affects Herbivore Behaviour. PLoS ONE, 2013, 8, e53232.	1.1	33
98	Specific thylakoid protein phosphorylations are prerequisites for overwintering of Norway spruce () Tj ETQq0 0 0 States of America, 2020, 117, 17499-17509.	rgBT /Ove 3.3	rlock 10 Tf 5 32
99	Comparative physiology of allopatric Populus species: geographic clines in photosynthesis, height growth, and carbon isotope discrimination in common gardens. Frontiers in Plant Science, 2015, 6, 528.	1.7	31
100	Local and systemic transcriptome responses to herbivory and jasmonic acid in Populus. Tree Genetics and Genomes, 2009, 5, 459-474.	0.6	30
101	What leads to reduced fitness in non-photochemical quenching mutants?. Physiologia Plantarum, 2005, 125, 202-211.	2.6	29
102	Pigment Binding, Fluorescence Properties, and Oligomerization Behavior of Lhca5, a Novel Light-harvesting Protein. Journal of Biological Chemistry, 2005, 280, 5163-5168.	1.6	29
103	Global expression profiling in leaves of free-growing aspen. BMC Plant Biology, 2008, 8, 61.	1.6	29
104	Challenges facing European agriculture and possible biotechnological solutions. Critical Reviews in Biotechnology, 2016, 36, 875-883.	5.1	29
105	Senescence: developmental program or timetable?. New Phytologist, 2008, 179, 575-579.	3.5	26
106	A systems biology model of the regulatory network in Populusleaves reveals interacting regulators and conserved regulation. BMC Plant Biology, 2011, 11, 13.	1.6	26
107	Antisense Inhibition of the PsbX Protein Affects PSII Integrity in the Higher Plant Arabidopsis thaliana. Plant and Cell Physiology, 2009, 50, 191-202.	1.5	25
108	Comparative Nucleotide Diversity Across North American and European Populus Species. Journal of Molecular Evolution, 2012, 74, 257-272.	0.8	25

#	Article	IF	CITATIONS
109	Inferring the Genomic Landscape of Recombination Rate Variation in European Aspen (<i>Populus) Tj ETQq1 1 0.</i>	784314 rg 0.8	gBT /Overla
110	Genetic variation in resistance of Norway spruce seedlings to damage by the pine weevil Hylobius abietis. Tree Genetics and Genomes, 2017, 13, 1.	0.6	21
111	The unique photosynthetic apparatus of Pinaceae: analysis of photosynthetic complexes in Picea abies. Journal of Experimental Botany, 2019, 70, 3211-3225.	2.4	21
112	Leaf shape in Populus tremula is a complex, omnigenic trait. Ecology and Evolution, 2020, 10, 11922-11940.	0.8	19
113	Adaptive Introgression Facilitates Adaptation to High Latitudes in European Aspen (<i>Populus) Tj ETQq1 1 0.784</i>	1314 rgBT	Qyerlock
114	What Affects mRNA Levels in Leaves of Field-Grown Aspen? A Study of Developmental and Environmental Influences. Plant Physiology, 2003, 133, 1190-1197.	2.3	17
115	An illustrated gardener's guide to transgenic <i>Arabidopsis</i> field experiments. New Phytologist, 2008, 180, 545-555.	3.5	17
116	A Protein Family Saga: From Photoprotection to Light-Harvesting (and Back?). Advances in Photosynthesis and Respiration, 2008, , 145-153.	1.0	17
117	Structure and Function of the Antenna System in Photosystem I. Advances in Photosynthesis and Respiration, 2003, , 253-279.	1.0	17
118	MASQOT: a method for cDNA microarray spot quality control. BMC Bioinformatics, 2005, 6, 250.	1.2	16
119	Growth-phase-dependent gene expression profiling of poplar (Populus alba × Populus tremula var.) Tj ETQq1 1 (D.784314 2.6	rg <u>β</u> T /Over
120	Characterization of genes with tissue-specific differential expression patterns in Populus. Tree Genetics and Genomes, 2007, 3, 351-362.	0.6	15
121	PsbS-Dependent Non-Photochemical Quenching. Advances in Photosynthesis and Respiration, 2014, , 297-314.	1.0	15
122	Gene-edited plants on the plate: the â€~CRISPR cabbage story'. Physiologia Plantarum, 2018, 164, 396-405.	2.6	15
123	Title is missing!. Plant Molecular Biology Reporter, 1999, 17, 221-224.	1.0	14
124	A kaleidoscope of photosynthetic antenna proteins and their emerging roles. Plant Physiology, 2022, 189, 1204-1219.	2.3	14
125	Characterization of Photosystem II Antenna Complexes Separated by Non-Denaturing Isoelectric Focusing. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1998, 53, 841-848.	0.6	13
126	Enhanced resistance of PsbS-deficient rice (Oryza sativa L.) to fungal and bacterial pathogens. Journal of Plant Biology, 2016, 59, 616-626.	0.9	13

#	Article	IF	CITATIONS
127	Stem girdling affects the onset of autumn senescence in aspen in interaction with metabolic signals. Physiologia Plantarum, 2021, 172, 201-217.	2.6	12
128	Analysis of 70,000 EST sequences to study divergence between two closely related Populus species. Tree Genetics and Genomes, 2005, 1, 109-115.	0.6	11
129	The Light-Harvesting Chlorophyll a/b-Binding Polypeptides and Their Genes in Angiosperm and Gymnosperm Species. , 1996, , 507-521.		11
130	MASQOT-GUI: spot quality assessment for the two-channel microarray platform. Bioinformatics, 2006, 22, 2554-2555.	1.8	8
131	Large scale geographic clines of parasite damage to <i>Populus tremula</i> L. Ecography, 2010, 33, 483-493.	2.1	8
132	Light-induced changes of photosystem II activity in dark-grown Scots pine seedlings. Physiologia Plantarum, 1992, 84, 6-12.	2.6	7
133	Cohort-structured tree populations. Heredity, 2010, 105, 331-332.	1.2	7
134	Expression, purification, crystallization and preliminary X-ray crystallographic studies of alkyl hydroperoxide reductase (AhpC) from the cyanobacteriumAnabaenasp. PCC 7120. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1203-1206.	0.7	6
135	Active-site plasticity revealed in the asymmetric dimer of AnPrx6 the 1-Cys peroxiredoxin and molecular chaperone from Anabaena sp. PCC 7120. Scientific Reports, 2017, 7, 17151.	1.6	6
136	<i>GIGANTEA</i> influences leaf senescence in trees in two different ways. Plant Physiology, 2021, 187, 2435-2450.	2.3	5
137	An atlas of the Norway spruce needle seasonal transcriptome. Plant Journal, 2021, 108, 1815-1829.	2.8	5
138	Structure and regulation of photosynthesis genes in Pinus sylvestris (Scots pine) and Pinus contorta (lodgepole pine). Forest Ecology and Management, 1991, 43, 287-300.	1.4	4
139	Light-Harvesting Complex (LHC) I and II: Pigments and Proteins. , 2004, , 567-570.		4
140	Solubilization Method for Isolation of Photosynthetic Mega- and Super-complexes from Conifer Thylakoids. Bio-protocol, 2021, 11, e4144.	0.2	4
141	Characterization of Photosystem II Antenna Complexes Separated By Non-Denaturing Isoelectric Focusing. , 1998, , 373-376.		4
142	Nitrate fertilization may delay autumn leaf senescence, while amino acid treatments do not. Physiologia Plantarum, 2022, 174, e13690.	2.6	4
143	Characterization of a Lhcb5 cDNA from Scots Pine (Pinus sylvestris). Plant Physiology, 1994, 106, 1695-1696.	2.3	2
144	Characterization of cDNAs Corresponding to Two Lhca4 Alleles from Scots Pine (Pinus sylvestris). Plant Physiology, 1994, 106, 1693-1694.	2.3	2

#	Article	IF	CITATIONS
145	Comparative analysis of the risk-handling procedures for gene technology applications in medical and plant science. Science and Engineering Ethics, 2006, 12, 465-479.	1.7	2
146	Cytokinins and tRNAs: arguments against a hypothesis of cytokinin action. Plant, Cell and Environment, 1992, 15, 503-505.	2.8	1
147	How to Grow Transgenic Arabidopsis in the Field. Methods in Molecular Biology, 2012, 847, 483-494.	0.4	1
148	Comparative and Evolutionary Genomics of Forest Trees. Forestry Sciences, 2014, , 597-614.	0.4	1
149	Light-induced changes of photosystem II activity in dark-grown Scots pine seedlings. Physiologia Plantarum, 1992, 84, 6-12.	2.6	1
150	Antisense Inhibition of the Photosynthetic Antenna Proteins CP29 and CP26: Implications for the Mechanism of Protective Energy Dissipation. Plant Cell, 2001, 13, 1193.	3.1	0
151	From micro towards the macro scale. New Phytologist, 2006, 172, 7-10.	3.5	0
152	Gene-edited plants: What is happening now?. Physiologia Plantarum, 2018, 164, 370-371.	2.6	0
153	Variation in non-target traits in genetically modified hybrid aspens does not exceed natural variation. New Biotechnology, 2021, 64, 27-36.	2.4	0
154	Dimeric cyanobacterial 1-Cys Prx6 is a moonlighting protein. Acta Crystallographica Section A: Foundations and Advances, 2016, 72, s247-s248.	0.0	0