
Jayasmita Jana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6179213/publications.pdf Version: 2024-02-01

LAVASMITA LANA

#	Article	IF	CITATIONS
1	Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application. RSC Advances, 2016, 6, 86174-86211.	1.7	201
2	Morphology Controlled Synthesis of SnS ₂ Nanomaterial for Promoting Photocatalytic Reduction of Aqueous Cr(VI) under Visible Light. Langmuir, 2014, 30, 4157-4164.	1.6	171
3	Remarkable Facet Selective Reduction of 4-Nitrophenol by Morphologically Tailored (111) Faceted Cu ₂ O Nanocatalyst. ACS Omega, 2017, 2, 1968-1984.	1.6	101
4	A one pot synthesis of Au–ZnO nanocomposites for plasmon-enhanced sunlight driven photocatalytic activity. New Journal of Chemistry, 2014, 38, 2999.	1.4	91
5	Blue emitting nitrogen-doped carbon dots as a fluorescent probe for nitrite ion sensing and cell-imaging. Analytica Chimica Acta, 2019, 1079, 212-219.	2.6	81
6	One pot synthesis of intriguing fluorescent carbon dots for sensing and live cell imaging. Talanta, 2016, 150, 253-264.	2.9	61
7	The effect of solvent polarity on emission properties of carbon dots and their uses in colorimetric sensors for water and humidity. Materials Research Bulletin, 2019, 119, 110564.	2.7	60
8	Biomolecule-mediated CdS-TiO ₂ -reduced graphene oxide ternary nanocomposites for efficient visible light-driven photocatalysis. Dalton Transactions, 2015, 44, 193-201.	1.6	51
9	Boron Precursor-Dependent Evolution of Differently Emitting Carbon Dots. Langmuir, 2017, 33, 573-584.	1.6	49
10	Synergism of gold and silver invites enhanced fluorescence for practical applications. RSC Advances, 2016, 6, 17683-17703.	1.7	47
11	Simple paper-based colorimetric and fluorescent glucose sensor using N-doped carbon dots and metal oxide hybrid structures. Analytica Chimica Acta, 2021, 1147, 187-198.	2.6	43
12	Silver nanoparticle anchored carbon dots for improved sensing, catalytic and intriguing antimicrobial activity. Dalton Transactions, 2015, 44, 20692-20707.	1.6	40
13	Glutathione modified N-doped carbon dots for sensitive and selective dopamine detection. Dyes and Pigments, 2021, 186, 109028.	2.0	40
14	Enhanced Catalytic Activity of Ag/Rh Bimetallic Nanomaterial: Evidence of an Ensemble Effect. Journal of Physical Chemistry C, 2016, 120, 5457-5467.	1.5	37
15	ZnO-Associated Carbon Dot-Based Fluorescent Assay for Sensitive and Selective Dopamine Detection. ACS Omega, 2019, 4, 17031-17038.	1.6	35
16	Selective Dopamine Chemosensing Using Silver-Enhanced Fluorescence. Langmuir, 2014, 30, 4120-4128.	1.6	32
17	Intriguing cysteine induced improvement of the emissive property of carbon dots with sensing applications. Physical Chemistry Chemical Physics, 2015, 17, 2394-2403.	1.3	29
18	One-Pot Fabrication of Perforated Graphitic Carbon Nitride Nanosheets Decorated with Copper Oxide by Controlled Ammonia and Sulfur Trioxide Release for Enhanced Catalytic Activity. ACS Omega, 2018, 3, 9318-9332.	1.6	29

Jayasmita Jana

#	Article	IF	CITATIONS
19	Carbon dot-MnO2 FRET system for fabrication of molecular logic gates. Sensors and Actuators B: Chemical, 2017, 246, 716-725.	4.0	26
20	Silver Molybdates with Intriguing Morphology and as a Peroxidase Mimic with High Sulfide Sensing Capacity. Crystal Growth and Design, 2017, 17, 295-307.	1.4	25
21	Green synthesis of highly fluorescent Au(<scp>i</scp>)@Ag ₂ /Ag ₃ -thiolate core–shell particles for selective detection of cysteine and Pb(<scp>ii</scp>). Physical Chemistry Chemical Physics, 2014, 16, 18185.	1.3	23
22	Photoproduced Fluorescent Au(I)@(Ag ₂ /Ag ₃)-Thiolate Giant Cluster: An Intriguing Sensing Platform for DMSO and Pb(II). Langmuir, 2014, 30, 348-357.	1.6	21
23	Designing a bimetallic transition metal oxide/hydroxide composite for effective electrocatalytic oxygen evolution reaction. Applied Surface Science, 2021, 562, 150253.	3.1	19
24	Carbon dot supported bimetallic nanocomposite for the hydrogen evolution reaction. Journal of Alloys and Compounds, 2021, 859, 157895.	2.8	18
25	Orange-red silver emitters for sensing application and bio-imaging. Dalton Transactions, 2015, 44, 11457-11469.	1.6	17
26	Fluorescence enhancement via varied long-chain thiol stabilized gold nanoparticles: A study of far-field effect. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 188, 551-560.	2.0	16
27	Contribution of Carbon Dot Nanoparticles in Electrocatalysis: Development in Energy Conversion Process. Journal of Electrochemical Science and Technology, 2020, 11, 220-237.	0.9	16
28	Evolution of Silver-Mediated, Enhanced Fluorescent Au–Ag Nanoclusters under UV Activation: A Platform for Sensing. ACS Omega, 2018, 3, 3463-3470.	1.6	15
29	Uncovering the actual inner-filter effect between highly efficient carbon dots and nitroaromatics. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 236, 118342.	2.0	14
30	High quantum yield aminophenylboronic acid-functionalized N-doped carbon dots for highly selective hypochlorite ion detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 260, 119895.	2.0	14
31	Benzophenone assisted UV-activated synthesis of unique Pd-nanodendrite embedded reduced graphene oxide nanocomposite: a catalyst for C–C coupling reaction and fuel cell. RSC Advances, 2019, 9, 21329-21343.	1.7	10
32	Fabrication of dual emission carbon dots and its use in highly sensitive thioamide detection. Dyes and Pigments, 2020, 175, 108126.	2.0	10
33	Designing an intriguingly fluorescent N, B-doped carbon dots based fluorescent probe for selective detection of NO2â^' ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 268, 120657.	2.0	10
34	Concentration-dependent emission of nitrogen-doped carbon dots and its use in hazardous metal-ion detection. Carbon Letters, 2021, 31, 523-536.	3.3	9
35	An account of doping in carbon dots for varied applications. Natural Resources & Engineering, 2017, 2, 5-12.	0.3	8
36	Achievement of silver-directed enhanced photophysical properties of gold nanoclusters. New Journal of Chemistry, 2019, 43, 7074-7082.	1.4	6

Jayasmita Jana

#	Article	IF	CITATIONS
37	Carbon dot–Au(i)Ag(0) assembly for the construction of an artificial light harvesting system. Dalton Transactions, 2018, 47, 3580-3587.	1.6	5
38	Solvent Polarity-Dependent Behavior of Aliphatic Thiols and Amines toward Intriguingly Fluorescent AuAgGSH Assembly. ACS Omega, 2017, 2, 8086-8098.	1.6	4
39	Effect of surfactant surface nature on the energy transfer efficiency (η) of a carbon dot-dye system. Current Applied Physics, 2020, 20, 1058-1065.	1.1	2