
Jean-Philippe Gagné

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6179170/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Research, 2008, 36, 6959-6976.	14.5	359
2	ADPâ€ribosyltransferases, an update on function and nomenclature. FEBS Journal, 2022, 289, 7399-7410.	4.7	150
3	Quantitative proteomics profiling of the poly(ADP-ribose)-related response to genotoxic stress. Nucleic Acids Research, 2012, 40, 7788-7805.	14.5	138
4	The expanding role of poly(ADP-ribose) metabolism: current challenges and new perspectives. Current Opinion in Cell Biology, 2006, 18, 145-151.	5.4	120
5	A proteomic approach to the identification of heterogeneous nuclear ribonucleoproteins as a new family of poly(ADP-ribose)-binding proteins. Biochemical Journal, 2003, 371, 331-340.	3.7	102
6	Mapping PARP-1 Auto-ADP-ribosylation Sites by Liquid Chromatography–Tandem Mass Spectrometry. Journal of Proteome Research, 2013, 12, 1868-1880.	3.7	80
7	Aurora kinase A localises to mitochondria to control organelle dynamics and energy production. ELife, 2018, 7, .	6.0	63
8	CARM1 regulates replication fork speed and stress response by stimulating PARP1. Molecular Cell, 2021, 81, 784-800.e8.	9.7	61
9	Ensconsin/Map7 promotes microtubule growth and centrosome separation in <i>Drosophila</i> neural stem cells. Journal of Cell Biology, 2014, 204, 1111-1121.	5.2	60
10	Quantitative site-specific ADP-ribosylation profiling of DNA-dependent PARPs. DNA Repair, 2015, 30, 68-79.	2.8	56
11	Proteomic Investigation of Phosphorylation Sites in Poly(ADP-ribose) Polymerase-1 and Poly(ADP-ribose) Glycohydrolase. Journal of Proteome Research, 2009, 8, 1014-1029.	3.7	49
12	Comparative proteome analysis of human epithelial ovarian cancer. Proteome Science, 2007, 5, 16.	1.7	47
13	Proteome profiling of human epithelial ovarian cancer cell line TOV-112D. Molecular and Cellular Biochemistry, 2005, 275, 25-55.	3.1	35
14	Crystallographic and Biochemical Analysis of the Mouse Poly(ADP-Ribose) Glycohydrolase. PLoS ONE, 2014, 9, e86010.	2.5	24
15	Poly(ADP-ribose) glycohydrolase is a component of the FMRP-associated messenger ribonucleoparticles. Biochemical Journal, 2005, 392, 499-509.	3.7	19
16	Localized protein biotinylation at DNA damage sites identifies ZPET, a repressor of homologous recombination. Genes and Development, 2019, 33, 75-89.	5.9	18
17	Zinc finger protein E4F1 cooperates with PARP-1 and BRG1 to promote DNA double-strand break repair. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	18
18	Hydrofluoric Acid-Based Derivatization Strategy To Profile PARP-1 ADP-Ribosylation by LC–MS/MS. Journal of Proteome Research, 2018, 17, 2542-2551.	3.7	15

#	Article	IF	CITATIONS
19	Neuroprotective Effects of PARP Inhibitors in Drosophila Models of Alzheimer's Disease. Cells, 2022, 11, 1284.	4.1	9
20	The prefoldin complex stabilizes the von Hippel-Lindau protein against aggregation and degradation. PLoS Genetics, 2020, 16, e1009183.	3.5	6
21	PARP-1 activation leads to cytosolic accumulation of TDP-43 in neurons. Neurochemistry International, 2021, 148, 105077.	3.8	5