
Richard Wood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6179075/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	EXIOBASE 3: Developing a Time Series of Detailed Environmentally Extended Multiâ€Regional Inputâ€Output Tables. Journal of Industrial Ecology, 2018, 22, 502-515.	2.8	514
2	Environmental Impact Assessment of Household Consumption. Journal of Industrial Ecology, 2016, 20, 526-536.	2.8	489
3	INPUT–OUTPUT ANALYSIS AND CARBON FOOTPRINTING: AN OVERVIEW OF APPLICATIONS. Economic Systems Research, 2009, 21, 187-216.	1.2	436
4	Global Sustainability Accounting—Developing EXIOBASE for Multi-Regional Footprint Analysis. Sustainability, 2015, 7, 138-163.	1.6	321
5	EXIOPOL – DEVELOPMENT AND ILLUSTRATIVE ANALYSES OF A DETAILED GLOBAL MR EE SUT/IOT. Economic Systems Research, 2013, 25, 50-70.	1.2	304
6	Agricultural and forestry trade drives large share of tropical deforestation emissions. Global Environmental Change, 2019, 56, 1-10.	3.6	289
7	Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nature Ecology and Evolution, 2019, 3, 628-637.	3.4	265
8	A CARBON FOOTPRINT TIME SERIES OF THE UK – RESULTS FROM A MULTI-REGION INPUT–OUTPUT MODEL. Economic Systems Research, 2010, 22, 19-42.	1.2	253
9	Carbon footprints of 13 000 cities. Environmental Research Letters, 2018, 13, 064041.	2.2	252
10	UNCERTAINTY ANALYSIS FOR MULTI-REGION INPUT–OUTPUT MODELS – A CASE STUDY OF THE UK'S CARBC FOOTPRINT. Economic Systems Research, 2010, 22, 43-63.	N 1.2	237
11	Solid Waste and the Circular Economy: A Global Analysis of Waste Treatment and Waste Footprints. Journal of Industrial Ecology, 2017, 21, 628-640.	2.8	225
12	CONVERGENCE BETWEEN THE EORA, WIOD, EXIOBASE, AND OPENEU'S CONSUMPTION-BASED CARBON ACCOUNTS. Economic Systems Research, 2014, 26, 245-261.	1.2	209
13	Mapping the carbon footprint of EU regions. Environmental Research Letters, 2017, 12, 054013.	2.2	197
14	Environmental and resource footprints in a global context: Europe's structural deficit in resource endowments. Global Environmental Change, 2016, 40, 171-181.	3.6	172
15	A comparative study of some environmental impacts of conventional and organic farming in Australia. Agricultural Systems, 2006, 89, 324-348.	3.2	165
16	Growth in Environmental Footprints and Environmental Impacts Embodied in Trade: Resource Efficiency Indicators from EXIOBASE3. Journal of Industrial Ecology, 2018, 22, 553-564.	2.8	147
17	Structural decomposition of energy use in Brazil from 1970 to 1996. Applied Energy, 2009, 86, 578-587.	5.1	144
18	Structural decomposition analysis of Australia's greenhouse gas emissions. Energy Policy, 2009, 37, 4943-4948.	4.2	134

#	Article	IF	CITATIONS
19	The growing importance of scope 3 greenhouse gas emissions from industry. Environmental Research Letters, 2018, 13, 104013.	2.2	131
20	The Carbon Footprint of Norwegian Household Consumption 1999–2012. Journal of Industrial Ecology, 2016, 20, 582-592.	2.8	125
21	Structural path decomposition. Energy Economics, 2009, 31, 335-341.	5.6	120
22	The Environmental Impact of Green Consumption and Sufficiency Lifestyles Scenarios in Europe: Connecting Local Sustainability Visions to Global Consequences. Ecological Economics, 2019, 164, 106322.	2.9	117
23	A Methodology for Integrated, Multiregional Life Cycle Assessment Scenarios under Large-Scale Technological Change. Environmental Science & Technology, 2015, 49, 11218-11226.	4.6	107
24	MATRIX BALANCING UNDER CONFLICTING INFORMATION. Economic Systems Research, 2009, 21, 23-44.	1.2	106
25	The unequal distribution of household carbon footprints in Europe and its link to sustainability. Global Sustainability, 2020, 3, .	1.6	100
26	Effect of aggregation and disaggregation on embodied material use of products in input–output analysis. Ecological Economics, 2015, 116, 289-299.	2.9	98
27	Quantifying the potential for consumer-oriented policy to reduce European and foreign carbon emissions. Climate Policy, 2020, 20, S28-S38.	2.6	96
28	Zero-value problems of the logarithmic mean divisia index decomposition method. Energy Policy, 2006, 34, 1326-1331.	4.2	88
29	Labor Embodied in Trade. Journal of Industrial Ecology, 2015, 19, 343-356.	2.8	87
30	The "Bad Labor―Footprint: Quantifying the Social Impacts of Globalization. Sustainability, 2014, 6, 7514-7540.	1.6	85
31	Endogenizing Capital in MRIO Models: The Implications for Consumption-Based Accounting. Environmental Science & Technology, 2018, 52, 13250-13259.	4.6	79
32	Environmental Impacts of Capital Formation. Journal of Industrial Ecology, 2018, 22, 55-67.	2.8	77
33	Resource footprints and their ecosystem consequences. Scientific Reports, 2017, 7, 40743.	1.6	74
34	The Global MRIO Lab $\hat{a} \in $ charting the world economy. Economic Systems Research, 2017, 29, 158-186.	1.2	74
35	Explaining value chain differences in MRIO databases through structural path decomposition. Economic Systems Research, 2016, 28, 243-272.	1.2	73
36	HARMONISING NATIONAL INPUT—OUTPUT TABLES FOR CONSUMPTION-BASED ACCOUNTING — EXPERIENC FROM EXIOPOL. Economic Systems Research, 2014, 26, 387-409.	ES _{1.2}	69

#	Article	IF	CITATIONS
37	Happier with less? Members of European environmental grassroots initiatives reconcile lower carbon footprints with higher life satisfaction and income increases. Energy Research and Social Science, 2020, 60, 101329.	3.0	69
38	Towards Robust, Authoritative Assessments of Environmental Impacts Embodied in Trade: Current State and Recommendations. Journal of Industrial Ecology, 2018, 22, 585-598.	2.8	68
39	Trade and the role of non-food commodities for global eutrophication. Nature Sustainability, 2018, 1, 314-321.	11.5	68
40	Carbon mitigation in domains of high consumer lock-in. Global Environmental Change, 2018, 52, 117-130.	3.6	67
41	Uncertainty of Consumption-Based Carbon Accounts. Environmental Science & Technology, 2018, 52, 7577-7586.	4.6	67
42	Some Comments on the GRAS Method. Economic Systems Research, 2007, 19, 461-465.	1.2	66
43	An Application of a Modified Ecological Footprint Method and Structural Path Analysis in a Comparative Institutional Study. Local Environment, 2003, 8, 365-386.	1.1	64
44	AUSTRALIA'S CARBON FOOTPRINT. Economic Systems Research, 2009, 21, 243-266.	1.2	63
45	FABIO—The Construction of the Food and Agriculture Biomass Input–Output Model. Environmental Science & Technology, 2019, 53, 11302-11312.	4.6	63
46	Prioritizing Consumptionâ€Based Carbon Policy Based on the Evaluation of Mitigation Potential Using Inputâ€Output Methods. Journal of Industrial Ecology, 2018, 22, 540-552.	2.8	61
47	Estimating Raw Material Equivalents on a Macro-Level: Comparison of Multi-Regional Input–Output Analysis and Hybrid LCI-IO. Environmental Science & Technology, 2013, 47, 14282-14289.	4.6	60
48	The structure, drivers and policy implications of the European carbon footprint. Climate Policy, 2020, 20, S39-S57.	2.6	59
49	A Material History of Australia. Journal of Industrial Ecology, 2009, 13, 847-862.	2.8	57
50	Economic modelling and indicators in life cycle sustainability assessment. International Journal of Life Cycle Assessment, 2013, 18, 1710-1721.	2.2	57
51	High sensitivity of metal footprint to national GDP in part explained by capital formation. Nature Geoscience, 2018, 11, 269-273.	5.4	57
52	Identifying priority areas for European resource policies: a MRIO-based material footprint assessment. Journal of Economic Structures, 2016, 5, .	0.6	54
53	Climate change mitigation potential of Norwegian households and the rebound effect. Journal of Cleaner Production, 2018, 172, 208-217.	4.6	54
54	Global Circular Economy Scenario in a Multiregional Input–Output Framework. Environmental Science & Technology, 2019, 53, 6362-6373.	4.6	53

#	Article	IF	CITATIONS
55	Dynamic Models of Fixed Capital Stocks and Their Application in Industrial Ecology. Journal of Industrial Ecology, 2015, 19, 104-116.	2.8	52
56	The capital load of global material footprints. Resources, Conservation and Recycling, 2020, 158, 104811.	5.3	51
57	Ageing society in developed countries challenges carbon mitigation. Nature Climate Change, 2022, 12, 241-248.	8.1	51
58	Improving Climate Change Mitigation Analysis: A Framework for Examining Feasibility. One Earth, 2020, 3, 325-336.	3.6	48
59	Unified Theory of Allocations and Constructs in Life Cycle Assessment and Inputâ€Output Analysis. Journal of Industrial Ecology, 2014, 18, 747-770.	2.8	47
60	THE â€~REST OF THE WORLD' – ESTIMATING THE ECONOMIC STRUCTURE OF MISSING REGIONS IN GLOBA MULTI-REGIONAL INPUT–OUTPUT TABLES. Economic Systems Research, 2014, 26, 303-326.	۹L 1.2	47
61	Development of a methodological framework for social life-cycle assessment of novel technologies. International Journal of Life Cycle Assessment, 2017, 22, 423-440.	2.2	45
62	Implementing exogenous scenarios in a global MRIO model for the estimation of future environmental footprints. Journal of Economic Structures, 2018, 7, .	0.6	45
63	A multi-impact analysis of changing ICT consumption patterns for Sweden and the EU: Indirect rebound effects and evidence of decoupling. Journal of Cleaner Production, 2019, 211, 1154-1161.	4.6	45
64	Connecting global emissions to fundamental human needs and their satisfaction. Environmental Research Letters, 2019, 14, 014002.	2.2	45
65	Beyond peak emission transfers: historical impacts of globalization and future impacts of climate policies on international emission transfers. Climate Policy, 2020, 20, S14-S27.	2.6	45
66	Choice of Allocations and Constructs for Attributional or Consequential Life Cycle Assessment and Inputâ€Output Analysis. Journal of Industrial Ecology, 2018, 22, 656-670.	2.8	40
67	Price Corrected Domestic Technology Assumption—A Method To Assess Pollution Embodied in Trade Using Primary Official Statistics Only. With a Case on CO ₂ Emissions Embodied in Imports to Europe. Environmental Science & Technology, 2013, 47, 1775-1783.	4.6	38
68	Correlation between production and consumption-based environmental indicators. Ecological Indicators, 2017, 76, 317-323.	2.6	36
69	Structural production layer decomposition: a new method to measure differences between MRIO databases for footprint assessments. Economic Systems Research, 2018, 30, 61-84.	1.2	36
70	The socio-economic impacts of introducing circular economy into Mediterranean rice production. Journal of Cleaner Production, 2019, 218, 273-283.	4.6	36
71	CONSTRUCTION, STABILITY AND PREDICTABILITY OF AN INPUT–OUTPUT TIME-SERIES FOR AUSTRALIA. Economic Systems Research, 2011, 23, 175-211.	1.2	34
72	Recent Progress in Assessment of Resource Efficiency and Environmental Impacts Embodied in Trade: An Introduction to this Special Issue. Journal of Industrial Ecology, 2018, 22, 489-501.	2.8	34

#	Article	IF	CITATIONS
73	Environmental Footprints of Agriculture Embodied in International Trade: Sensitivity of Harvested Area Footprint of Chinese Exports. Ecological Economics, 2018, 145, 323-330.	2.9	34
74	INVESTIGATING ALTERNATIVE APPROACHES TO HARMONISE MULTI-REGIONAL INPUT–OUTPUT DATA. Economic Systems Research, 2014, 26, 354-385.	1.2	32
75	Understanding GHG emissions from Swedish consumption - Current challenges in reaching the generational goal. Journal of Cleaner Production, 2019, 212, 428-437.	4.6	29
76	Explaining decoupling in high income countries: A structural decomposition analysis of the change in energy footprint from 1970 to 2009. Energy, 2020, 194, 116909.	4.5	29
77	Does climate action destroy jobs? An assessment of the employment implications of the 2â€degree goal. International Labour Review, 2018, 157, 519-556.	1.0	28
78	Global transport emissions in the Swedish carbon footprint. Journal of Cleaner Production, 2019, 226, 210-220.	4.6	28
79	The Swedish footprint: A multi-model comparison. Journal of Cleaner Production, 2019, 209, 1578-1592.	4.6	28
80	Environmental pressures from Swedish consumption – A hybrid multi-regional input-output approach. Journal of Cleaner Production, 2019, 228, 634-644.	4.6	27
81	Beyond the borders – burdens of Swedish food consumption due to agrochemicals, greenhouse gases and land-use change. Journal of Cleaner Production, 2019, 214, 644-652.	4.6	26
82	Variation in trends of consumption based carbon accounts. Scientific Data, 2019, 6, 99.	2.4	25
83	Aggregate Measures of Complex Economic Structure and Evolution. Journal of Industrial Ecology, 2009, 13, 264-283.	2.8	24
84	Future changes in consumption: The income effect on greenhouse gas emissions. Energy Economics, 2021, 95, 105114.	5.6	24
85	Headline Environmental Indicators Revisited with the Global Multiâ€Regional Inputâ€Output Database EXIOBASE. Journal of Industrial Ecology, 2018, 22, 565-573.	2.8	23
86	Quantifying Europe's biodiversity footprints and the role of urbanization and income. Global Sustainability, 2020, 3, .	1.6	23
87	Adding country resolution to EXIOBASE: impacts on land use embodied in trade. Journal of Economic Structures, 2020, 9, 14.	0.6	23
88	An assessment of environmental sustainability in Northern Australia using the ecological footprint and with reference to Indigenous populations and remoteness. Ecological Economics, 2009, 68, 1375-1384.	2.9	22
89	Regional sustainability in Northern Australia —A quantitative assessment of social, economic and environmental impacts. Ecological Economics, 2010, 69, 1877-1882.	2.9	22
90	Hybridization of complete PLCA and MRIO databases for a comprehensive product system coverage. Journal of Industrial Ecology, 2020, 24, 774-790.	2.8	22

#	Article	IF	CITATIONS
91	A network approach for assembling and linking input–output models. Economic Systems Research, 2016, 28, 518-538.	1.2	21
92	Socio-economic impacts of low-carbon power generation portfolios: Strategies with and without CCS for the Netherlands. Applied Energy, 2016, 183, 257-277.	5.1	21
93	When Do Allocations and Constructs Respect Material, Energy, Financial, and Production Balances in LCA and EEIO?. Journal of Industrial Ecology, 2016, 20, 67-84.	2.8	20
94	A novel maximum entropy approach to hybrid monetary-physical supply-chain modelling and its application to biodiversity impacts of palm oil embodied in consumption. Environmental Research Letters, 2018, 13, 115002.	2.2	20
95	Trends in national biodiversity footprints of land use. Ecological Economics, 2021, 185, 107059.	2.9	19
96	Direct versus Embodied Energy – The Need for Urban Lifestyle Transitions. , 2008, , 91-120.		18
97	Balance issues in input–output analysis: A comment on physical inhomogeneity, aggregation bias, and coproduction. Ecological Economics, 2016, 126, 188-197.	2.9	18
98	A Note on the Magnitude of the Feedback Effect in Environmentally Extended Multiâ€Region Inputâ€Output Tables. Journal of Industrial Ecology, 2018, 22, 532-539.	2.8	17
99	Relevance of Global Multi Regional Input Output Databases for Global Environmental Policy: Experiences with EXIOBASE 3. Journal of Industrial Ecology, 2018, 22, 482-484.	2.8	17
100	Consequences of long-term infrastructure decisions—the case of self-healing roads and their CO ₂ emissions. Environmental Research Letters, 2019, 14, 114040.	2.2	17
101	Towards accepted procedures for calculating international consumption-based carbon accounts. Climate Policy, 2020, 20, S90-S106.	2.6	17
102	Indicators for national consumption-based accounting of chemicals. Journal of Cleaner Production, 2019, 215, 1-12.	4.6	15
103	Durable Goods Drive Two-Thirds of Global Households' Final Energy Footprints. Environmental Science & Technology, 2021, 55, 3175-3187.	4.6	14
104	Socio-economic impacts of future electricity generation scenarios in Europe: Potential costs and benefits of using CO 2 Capture and Storage (CCS). International Journal of Greenhouse Gas Control, 2015, 42, 471-484.	2.3	13
105	Coupling Inputâ€Output Tables with Macroâ€Life Cycle Assessment to Assess Worldwide Impacts of Biofuels Transport Policies. Journal of Industrial Ecology, 2018, 22, 643-655.	2.8	10
106	Understanding the trends in Denmark's global food trade-related greenhouse gas and resource footprint. Journal of Cleaner Production, 2021, 313, 127785.	4.6	7
107	The Virtual IELab – an exercise in replicating part of the EXIOBASE V.2 production pipeline in a virtual laboratory. Economic Systems Research, 2017, 29, 209-233.	1.2	6
108	Environmental pressure from Swedish consumption – The largest contributing producer countries, products and services. Journal of Cleaner Production, 2019, 231, 698-713.	4.6	6

IF # ARTICLE CITATIONS Material efficiency for climate change mitigation. Journal of Industrial Ecology, 2021, 25, 254-259. 2.8 Environmental footprints., 2017,,. 110 5 Building national emission inventories for the energy sector: Implications for life cycle assessment and nations environmental footprinting. Science of the Total Environment, 2020, 708, 135119. Carbon Footprints Concentrated in Few Global Cities. SSRN Electronic Journal, 0, , . 112 0.4 3 Improving consumption based accounting for global capture fisheries. Journal of Cleaner 4.6 Production, 2019, 212, 1396-1408. Sustainability Assessment of the Large Implementation of Carbon Capture and Storage in OECD Europe. 114 1.8 1 Energy Procedia, 2014, 63, 7421-7428. On the financial balance of input–output constructs: revisiting an axiomatic evaluation. Economic Systems Research, 2016, 28, 333-343. 1.2 ¿La acción climática destruye empleos? Efectos del objetivo de los 2 °C del Acuerdo de ParÃs en el 116 0.1 1 empleo. International Labour Review, 2018, 137, 567-607. L'action pour le climat, une action contre l'emploi? Évaluation des conséquences du scénario à 2 °C sur l'emploi. International Labour Review, 2018, 157, 573-613. 0.1 1 Principal Methodological Approaches to Studying Sustainable Consumption: Scenario Analysis, 118 Ecological Footprints and Structural Decomposition Analysis. Eco-efficiency in Industry and Science, 0.1 1 2009, 285-312. Reply to: Soils need to be considered when assessing the impacts of land-use change on carbon 119 3.4 sequestration. Nature Ecology and Evolution, 2019, 3, 1643-1644.