Tolou Shokuhfar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6178575/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science, 2018, 359, 1489-1494.	6.0	1,065
2	Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy. Nature Communications, 2017, 8, .	5.8	301
3	Highâ€Resolution Electron Microscopy and Spectroscopy of Ferritin in Biocompatible Graphene Liquid Cells and Graphene Sandwiches. Advanced Materials, 2014, 26, 3410-3414.	11.1	148
4	Non-Dendritic Zn Electrodeposition Enabled by Zincophilic Graphene Substrates. ACS Applied Materials & Interfaces, 2019, 11, 44077-44089.	4.0	129
5	Inhibition of MAP kinase/NF-kB mediated signaling and attenuation of lipopolysaccharide induced severe sepsis by cerium oxide nanoparticles. Biomaterials, 2015, 59, 160-171.	5.7	121
6	2D boron nitride nanosheets for polymer composite materials. Npj 2D Materials and Applications, 2021, 5, .	3.9	110
7	Scalable Synthesis of High Entropy Alloy Nanoparticles by Microwave Heating. ACS Nano, 2021, 15, 14928-14937.	7.3	85
8	Cytotoxicity and genotoxicity caused by yttrium oxide nanoparticles in HEK293 cells. International Journal of Nanomedicine, 2014, 9, 1379.	3.3	70
9	Direct Compressive Measurements of Individual Titanium Dioxide Nanotubes. ACS Nano, 2009, 3, 3098-3102.	7.3	69
10	Atomistic Insights into the Oriented Attachment of Tunnel-Based Oxide Nanostructures. ACS Nano, 2016, 10, 539-548.	7.3	66
11	Cerium oxide nanoparticles attenuate monocrotaline induced right ventricular hypertrophy following pulmonary arterial hypertension. Biomaterials, 2014, 35, 9951-9962.	5.7	62
12	Revealing nanoscale mineralization pathways of hydroxyapatite using in situ liquid cell transmission electron microscopy. Science Advances, 2020, 6, .	4.7	61
13	Antiâ€Oxygen Leaking LiCoO ₂ . Advanced Functional Materials, 2019, 29, 1901110.	7.8	60
14	Operando liquid cell electron microscopy of discharge and charge kinetics in lithium-oxygen batteries. Nano Energy, 2018, 49, 338-345.	8.2	59
15	Synthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface. Applied Surface Science, 2017, 399, 682-701.	3.1	58
16	Intercalation of anti-inflammatory drug molecules within TiO2 nanotubes. RSC Advances, 2013, 3, 17380.	1.7	57
17	Fabrication of drug eluting implants: study of drug release mechanism from titanium dioxide nanotubes. Journal Physics D: Applied Physics, 2015, 48, 275401.	1.3	47
18	The role of electron irradiation history in liquid cell transmission electron microscopy. Science Advances, 2018, 4, eaaq1202.	4.7	47

TOLOU SHOKUHFAR

#	Article	IF	CITATIONS
19	Novel PMMA bone cement nanocomposites containing magnesium phosphate nanosheets and hydroxyapatite nanofibers. Materials Science and Engineering C, 2020, 109, 110497.	3.8	47
20	Cerium oxide nanoparticles attenuate acute kidney injury induced by intra-abdominal infection in Sprague–Dawley rats. Journal of Nanobiotechnology, 2015, 13, 75.	4.2	46
21	Precise In Situ Modulation of Local Liquid Chemistry via Electron Irradiation in Nanoreactors Based on Graphene Liquid Cells. Advanced Materials, 2016, 28, 7716-7722.	11.1	44
22	Continuous 2000â€ [−] K droplet-to-particle synthesis. Materials Today, 2020, 35, 106-114.	8.3	43
23	Tribo-electrochemical behavior of bio-functionalized TiO2 nanotubes in artificial saliva: Understanding of degradation mechanisms. Wear, 2017, 384-385, 28-42.	1.5	41
24	<i>In situ</i> study of nucleation and growth dynamics of Au nanoparticles on MoS ₂ nanoflakes. Nanoscale, 2018, 10, 15809-15818.	2.8	38
25	Advances in Grapheneâ€Based Liquid Cell Electron Microscopy: Working Principles, Opportunities, and Challenges. Small Methods, 2019, 3, 1900026.	4.6	38
26	Biophysical evaluation of cells on nanotubular surfaces: the effects of atomic ordering and chemistry. International Journal of Nanomedicine, 2014, 9, 3737.	3.3	34
27	Investigation of the magnetosome biomineralization in magnetotactic bacteria using graphene liquid cell – transmission electron microscopy. Nanoscale, 2019, 11, 698-705.	2.8	29
28	<p>TEM Studies on Antibacterial Mechanisms of Black Phosphorous Nanosheets</p> . International Journal of Nanomedicine, 2020, Volume 15, 3071-3085.	3.3	28
29	<i>In Situ</i> Study of Molecular Structure of Water and Ice Entrapped in Graphene Nanovessels. ACS Nano, 2019, 13, 4677-4685.	7.3	27
30	Polyethylene-BN nanosheets nanocomposites with enhanced thermal and mechanical properties. Composites Science and Technology, 2021, 204, 108631.	3.8	25
31	A Light urable and Tunable Extracellular Matrix Hydrogel for In Situ Sutureâ€Free Corneal Repair. Advanced Functional Materials, 2022, 32, .	7.8	25
32	Imaging of soft materials using in situ liquid-cell transmission electron microscopy. Journal of Physics Condensed Matter, 2019, 31, 103001.	0.7	23
33	A first insight on the bio-functionalization mechanisms of TiO2 nanotubes with calcium, phosphorous and zinc by reverse polarization anodization. Surface and Coatings Technology, 2017, 324, 153-166.	2.2	22
34	In Situ Transmission Electron Microscopy Explores a New Nanoscale Pathway for Direct Gypsum Formation in Aqueous Solution. ACS Applied Nano Materials, 2018, 1, 5430-5440.	2.4	22
35	Hydroxyapatite Fibers: A Review of Synthesis Methods. Jom, 2017, 69, 1354-1360.	0.9	21
36	In-situ porcine corneal matrix hydrogel as ocular surface bandage. Ocular Surface, 2021, 21, 27-36.	2.2	20

TOLOU SHOKUHFAR

#	Article	IF	CITATIONS
37	In Situ Liquidâ€Cell TEM Observation of Multiphase Classical and Nonclassical Nucleation of Calcium Oxalate. Advanced Functional Materials, 2021, 31, 2007736.	7.8	19
38	Facile electrochemical synthesis of antimicrobial TiO2 nanotube arrays. International Journal of Nanomedicine, 2014, 9, 5177.	3.3	18
39	Cerium oxide nanoparticles inhibit lipopolysaccharide induced MAP kinase/NF-kB mediated severe sepsis. Data in Brief, 2015, 4, 105-115.	0.5	18
40	Bio-camouflage of anatase nanoparticles explored by in situ high-resolution electron microscopy. Nanoscale, 2017, 9, 10684-10693.	2.8	18
41	On the structure and chemistry of iron oxide cores in human heart and human spleen ferritins using graphene liquid cell electron microscopy. Nanoscale, 2019, 11, 16868-16878.	2.8	18
42	Collagen biomineralization: pathways, mechanisms, and thermodynamics. Emergent Materials, 2021, 4, 1205-1224.	3.2	18
43	Cerium oxide nanoparticle aggregates affect stress response and function in <i>Caenorhabditis elegans</i> . SAGE Open Medicine, 2015, 3, 205031211557538.	0.7	17
44	TiO ₂ nanotubes enriched with calcium, phosphorous and zinc: promising bio-selective functional surfaces for osseointegrated titanium implants. RSC Advances, 2017, 7, 49720-49738.	1.7	16
45	Facile hydrothermal synthesis of antibacterial multi-layered hydroxyapatite nanostructures with superior flexibility. CrystEngComm, 2018, 20, 1304-1312.	1.3	15
46	Combination targeting of â€~platelets + fibrin' enhances clot anchorage efficiency of nanoparticles for vascular drug delivery. Nanoscale, 2020, 12, 21255-21270.	2.8	15
47	A study on the modulation of the electrical transport by mechanical straining of individual titanium dioxide nanotube. Applied Physics Letters, 2010, 97, .	1.5	13
48	In situ graphene liquid cell-transmission electron microscopy study of insulin secretion in pancreatic islet cells. International Journal of Nanomedicine, 2019, Volume 14, 371-382.	3.3	13
49	<p>Correlative ex situ and Liquid-Cell TEM Observation of Bacterial Cell Membrane Damage Induced by Rough Surface Topology</p> . International Journal of Nanomedicine, 2020, Volume 15, 1929-1938.	3.3	13
50	Fabrication, Rheological, and Compositional Characterization of Thermoresponsive Hydrogel from Cornea. Tissue Engineering - Part C: Methods, 2021, 27, 307-321.	1.1	12
51	Nanotopography and Surface Stress Analysis of Ti6Al4V Bioimplant: An Alternative Design for Stability. Jom, 2015, 67, 2518-2533.	0.9	11
52	In Situ Visualization of Ferritin Biomineralization via Graphene Liquid Cell-Transmission Electron Microscopy. ACS Biomaterials Science and Engineering, 2020, 6, 3208-3216.	2.6	11
53	Lipopolysaccharide induced MAP kinase activation in RAW 264.7 cells attenuated by cerium oxide nanoparticles. Data in Brief, 2015, 4, 96-99.	0.5	8
54	Assessment of Pressure and Density of Confined Water in Graphene Liquid Cells. Advanced Materials Interfaces, 2020, 7, 1901727.	1.9	8

TOLOU SHOKUHFAR

#	Article	IF	CITATIONS
55	<i>In situ</i> visualization of the superior nanomechanical flexibility of individual hydroxyapatite nanobelts. CrystEngComm, 2018, 20, 1031-1036.	1.3	7
56	Structural instabilities in TiO2 nanotubes. Journal of Applied Physics, 2010, 108, 104310.	1.1	6
57	The Role of Nicotine in the Corrosive Behavior of a <scp>Ti</scp> â€6 <scp>Al</scp> â€4 <scp>V</scp> Dental Implant. Clinical Implant Dentistry and Related Research, 2015, 17, e352-63.	1.6	6
58	Optimization of the Mechanical Properties and the Cytocompatibility for the PMMA Nanocomposites Reinforced with the Hydroxyapatite Nanofibers and the Magnesium Phosphate Nanosheets. Materials, 2021, 14, 5893.	1.3	6
59	Deformation-driven electrical transport in amorphous TiO2 nanotubes. Applied Physics A: Materials Science and Processing, 2012, 109, 127-132.	1.1	5
60	High Resolution In-situ Study of Reactions in Graphene Liquid Cells. Microscopy and Microanalysis, 2014, 20, 1520-1521.	0.2	5
61	Monitoring the Exocytosis and Full Fusion of Insulin Granules in Pancreatic Islet Cells via Graphene Liquid Cell-Transmission Electron Microscopy. Microscopy and Microanalysis, 2017, 23, 1310-1311.	0.2	3
62	Revealing the Iron Oxides Mineral Core in Ferritin due to the Variations in the H and L Subunits. Microscopy and Microanalysis, 2017, 23, 1184-1185.	0.2	1
63	Improved Environmental Control and Experimental Repeatability with New In-Situ Devices. Microscopy and Microanalysis, 2015, 21, 949-950.	0.2	0
64	Dynamic studies of solution-based reactions using operando TEM. Microscopy and Microanalysis, 2015, 21, 263-264.	0.2	0
65	Using Graphene Liquid Cells for High-resolution Chemical Analysis of Nano-particle Reactions. Microscopy and Microanalysis, 2015, 21, 1289-1290.	0.2	Ο
66	Precision In Situ Control of Local Liquid Chemistry via Electron Irradiation. Microscopy and Microanalysis, 2015, 21, 265-266.	0.2	0
67	In Situ TEM Visualization on the Super Flexibility of Multi-layered Hydroxyapatite Nanobelts with Antibacterial Property. Microscopy and Microanalysis, 2020, 26, 1428-1429.	0.2	0
68	In situ visualization of superior nanomechanical flexibility of individual ydroxyapatite nanobelts. Microscopy and Microanalysis, 2021, 27, 1780-1781.	0.2	0