
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6178540/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chronic Antidepressant Treatment Increases Neurogenesis in Adult Rat Hippocampus. Journal of Neuroscience, 2000, 20, 9104-9110.	1.7	2,822
2	Neurobiology of Depression. Neuron, 2002, 34, 13-25.	3.8	2,688
3	NEURAL MECHANISMS OF ADDICTION: The Role of Reward-Related Learning and Memory. Annual Review of Neuroscience, 2006, 29, 565-598.	5.0	2,489
4	The molecular neurobiology of depression. Nature, 2008, 455, 894-902.	13.7	2,355
5	Molecular Adaptations Underlying Susceptibility and Resistance to Social Defeat in Brain Reward Regions. Cell, 2007, 131, 391-404.	13.5	1,927
6	Essential Role of BDNF in the Mesolimbic Dopamine Pathway in Social Defeat Stress. Science, 2006, 311, 864-868.	6.0	1,869
7	Animal models of neuropsychiatric disorders. Nature Neuroscience, 2010, 13, 1161-1169.	7.1	1,762
8	The Mesolimbic Dopamine Reward Circuit in Depression. Biological Psychiatry, 2006, 59, 1151-1159.	0.7	1,739
9	Molecular basis of long-term plasticity underlying addiction. Nature Reviews Neuroscience, 2001, 2, 119-128.	4.9	1,626
10	Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nature Neuroscience, 2006, 9, 519-525.	7.1	1,593
11	The brain reward circuitry in mood disorders. Nature Reviews Neuroscience, 2013, 14, 609-625.	4.9	1,418
12	New approaches to antidepressant drug discovery: beyond monoamines. Nature Reviews Neuroscience, 2006, 7, 137-151.	4.9	1,323
13	Epigenetic regulation in psychiatric disorders. Nature Reviews Neuroscience, 2007, 8, 355-367.	4.9	1,243
14	Molecular and Cellular Basis of Addiction. Science, 1997, 278, 58-63.	6.0	1,238
15	Is there a common molecular pathway for addiction?. Nature Neuroscience, 2005, 8, 1445-1449.	7.1	1,200
16	The many faces of CREB. Trends in Neurosciences, 2005, 28, 436-445.	4.2	1,177
17	Psychobiology and molecular genetics of resilience. Nature Reviews Neuroscience, 2009, 10, 446-457.	4.9	1,062
18	Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature, 2013, 493, 532-536.	13.7	961

#	Article	IF	CITATIONS
19	Neurobiology of resilience. Nature Neuroscience, 2012, 15, 1475-1484.	7.1	934
20	Transcriptional and epigenetic mechanisms of addiction. Nature Reviews Neuroscience, 2011, 12, 623-637.	4.9	850
21	Cell Type–Specific Loss of BDNF Signaling Mimics Optogenetic Control of Cocaine Reward. Science, 2010, 330, 385-390.	6.0	778
22	ngs.plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases. BMC Genomics, 2014, 15, 284.	1.2	771
23	Mania-like behavior induced by disruption of CLOCK. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6406-6411.	3.3	720
24	Chromatin Remodeling Is a Key Mechanism Underlying Cocaine-Induced Plasticity in Striatum. Neuron, 2005, 48, 303-314.	3.8	692
25	Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proceedings of the United States of America, 2004, 101, 10827-10832.	3.3	597
26	Expression of the transcription factor ΔFosB in the brain controls sensitivity to cocaine. Nature, 1999, 401, 272-276.	13.7	591
27	Essential Role of the Histone Methyltransferase G9a in Cocaine-Induced Plasticity. Science, 2010, 327, 213-216.	6.0	581
28	The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends in Neurosciences, 2010, 33, 267-276.	4.2	566
29	Histone Deacetylase 5 Epigenetically Controls Behavioral Adaptations to Chronic Emotional Stimuli. Neuron, 2007, 56, 517-529.	3.8	560
30	Regulation of gene expression and cocaine reward by CREB and ΔFosB. Nature Neuroscience, 2003, 6, 1208-1215.	7.1	558
31	Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nature Neuroscience, 2010, 13, 1137-1143.	7.1	553
32	Linking Molecules to Mood: New Insight Into the Biology of Depression. American Journal of Psychiatry, 2010, 167, 1305-1320.	4.0	547
33	Antidepressant Effect of Optogenetic Stimulation of the Medial Prefrontal Cortex. Journal of Neuroscience, 2010, 30, 16082-16090.	1.7	542
34	Molecular mechanisms of drug addiction. Neuropharmacology, 2004, 47, 24-32.	2.0	538
35	Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments. Neuron, 1994, 13, 1235-1244.	3.8	535
36	Antidepressant Actions of Histone Deacetylase Inhibitors. Journal of Neuroscience, 2009, 29, 11451-11460.	1.7	535

#	Article	IF	CITATIONS
37	The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress. Nature Neuroscience, 2008, 11, 752-753.	7.1	534
38	Sex-specific transcriptional signatures in human depression. Nature Medicine, 2017, 23, 1102-1111.	15.2	532
39	Preclinical models: status of basic research in depression. Biological Psychiatry, 2002, 52, 503-528.	0.7	501
40	A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function. Brain Research, 1991, 548, 100-110.	1.1	488
41	Protein phosphorylation in the brain. Nature, 1983, 305, 583-588.	13.7	480
42	Decoding the Epigenetic Language of Neuronal Plasticity. Neuron, 2008, 60, 961-974.	3.8	468
43	Altered Responsiveness to Cocaine and Increased Immobility in the Forced Swim Test Associated with Elevated cAMP Response Element-Binding Protein Expression in Nucleus Accumbens. Journal of Neuroscience, 2001, 21, 7397-7403.	1.7	466
44	Brain-Derived Neurotrophic Factor Conditional Knockouts Show Gender Differences in Depression-Related Behaviors. Biological Psychiatry, 2007, 61, 187-197.	0.7	456
45	Regulation of dopaminergic transmission and cocaine reward by the Clock gene. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9377-9381.	3.3	453
46	CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11435-11440.	3.3	447
47	Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature, 2001, 410, 376-380.	13.7	442
48	ΔFosB in brain reward circuits mediates resilience to stress and antidepressant responses. Nature Neuroscience, 2010, 13, 745-752.	7.1	429
49	Homeostatic and Hedonic Signals Interact in the Regulation of Food Intake. Journal of Nutrition, 2009, 139, 629-632.	1.3	423
50	Histone Modifications at Gene Promoter Regions in Rat Hippocampus after Acute and Chronic Electroconvulsive Seizures. Journal of Neuroscience, 2004, 24, 5603-5610.	1.7	397
51	Animal Models of Depression: Molecular Perspectives. Current Topics in Behavioral Neurosciences, 2011, 7, 121-147.	0.8	394
52	Historical review: Molecular and cellular mechanisms of opiate and cocaine addiction. Trends in Pharmacological Sciences, 2004, 25, 210-218.	4.0	376
53	Brain-derived neurotrophic factor in the ventral midbrain–nucleus accumbens pathway: a role in depression. Biological Psychiatry, 2003, 54, 994-1005.	0.7	375
54	Genome-wide Analysis of Chromatin Regulation by Cocaine Reveals a Role for Sirtuins. Neuron, 2009, 62, 335-348.	3.8	371

#	Article	lF	CITATIONS
55	Enhancement of Locomotor Activity and Conditioned Reward to Cocaine by Brain-Derived Neurotrophic Factor. Journal of Neuroscience, 1999, 19, 4110-4122.	1.7	358
56	Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nature Communications, 2015, 6, 7062.	5.8	356
57	diffReps: Detecting Differential Chromatin Modification Sites from ChIP-seq Data with Biological Replicates. PLoS ONE, 2013, 8, e65598.	1.1	355
58	Epigenetic mechanisms in drug addiction. Trends in Molecular Medicine, 2008, 14, 341-350.	3.5	347
59	ΔFosB: a molecular switch for long-term adaptation in the brain. Molecular Brain Research, 2004, 132, 146-154.	2.5	341
60	Epigenetics of the Depressed Brain: Role of Histone Acetylation and Methylation. Neuropsychopharmacology, 2013, 38, 124-137.	2.8	338
61	Common Molecular and Cellular Substrates of Addiction and Memory. Neurobiology of Learning and Memory, 2002, 78, 637-647.	1.0	337
62	Epigenetic mechanisms of drug addiction. Neuropharmacology, 2014, 76, 259-268.	2.0	336
63	Mesolimbic Dopamine Neurons in the Brain Reward Circuit Mediate Susceptibility to Social Defeat and Antidepressant Action. Journal of Neuroscience, 2010, 30, 16453-16458.	1.7	334
64	Transcriptional mechanisms of addiction: role of ΔFosB. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 3245-3255.	1.8	329
65	The Hypothalamic Neuropeptide Melanin-Concentrating Hormone Acts in the Nucleus Accumbens to Modulate Feeding Behavior and Forced-Swim Performance. Journal of Neuroscience, 2005, 25, 2933-2940.	1.7	323
66	Treatment resistant depression: A multi-scale, systems biology approach. Neuroscience and Biobehavioral Reviews, 2018, 84, 272-288.	2.9	319
67	CREB regulation of nucleus accumbens excitability mediates social isolation–induced behavioral deficits. Nature Neuroscience, 2009, 12, 200-209.	7.1	317
68	Sensitization to Morphine Induced by Viral-Mediated Gene Transfer. Science, 1997, 277, 812-815.	6.0	309
69	Increased vulnerability to cocaine in mice lacking the serotonin-1B receptor. Nature, 1998, 393, 175-178.	13.7	309
70	Sex Differences in Nucleus Accumbens Transcriptome Profiles Associated with Susceptibility versus Resilience to Subchronic Variable Stress. Journal of Neuroscience, 2015, 35, 16362-16376.	1.7	308
71	The Striatal Balancing Act in Drug Addiction: Distinct Roles of Direct and Indirect Pathway Medium Spiny Neurons. Frontiers in Neuroanatomy, 2011, 5, 41.	0.9	301
72	CREB modulates excitability of nucleus accumbens neurons. Nature Neuroscience, 2006, 9, 475-477.	7.1	299

#	Article	IF	CITATIONS
73	Regulation of ERK (Extracellular Signal Regulated Kinase), Part of the Neurotrophin Signal Transduction Cascade, in the Rat Mesolimbic Dopamine System by Chronic Exposure to Morphine or Cocaine. Journal of Neuroscience, 1996, 16, 4707-4715.	1.7	296
74	Molecular Neurobiology of Drug Addiction. Annual Review of Medicine, 2004, 55, 113-132.	5.0	296
75	Neurotrophic factors and structural plasticity in addiction. Neuropharmacology, 2009, 56, 73-82.	2.0	296
76	Paternal Transmission of Stress-Induced Pathologies. Biological Psychiatry, 2011, 70, 408-414.	0.7	294
77	Chronic Fos-Related Antigens: Stable Variants of ΔFosB Induced in Brain by Chronic Treatments. Journal of Neuroscience, 1997, 17, 4933-4941.	1.7	293
78	Induction of ÂFosB in Reward-Related Brain Structures after Chronic Stress. Journal of Neuroscience, 2004, 24, 10594-10602.	1.7	289
79	Inhibition of cAMP Response Element-Binding Protein or Dynorphin in the Nucleus Accumbens Produces an Antidepressant-Like Effect. Journal of Neuroscience, 2002, 22, 10883-10890.	1.7	285
80	Early life stress confers lifelong stress susceptibility in mice via ventral tegmental area OTX2. Science, 2017, 356, 1185-1188.	6.0	285
81	Epigenetic mechanisms of chronic pain. Trends in Neurosciences, 2015, 38, 237-246.	4.2	273
82	Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility. Neuron, 2016, 90, 969-983.	3.8	272
83	The Neurobiology of Cocaine Addiction. Science & Practice Perspectives / A Publication of the National Institute on Drug Abuse, National Institutes of Health, 2005, 3, 4-10.	0.4	265
84	In vivo imaging identifies temporal signature of D1 and D2 medium spiny neurons in cocaine reward. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2726-2731.	3.3	258
85	Imipramine Treatment and Resiliency Exhibit Similar Chromatin Regulation in the Mouse Nucleus Accumbens in Depression Models. Journal of Neuroscience, 2009, 29, 7820-7832.	1.7	257
86	Critical Role of Histone Turnover in Neuronal Transcription and Plasticity. Neuron, 2015, 87, 77-94.	3.8	257
87	Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving. Nature Neuroscience, 2013, 16, 1644-1651.	7.1	256
88	Prefrontal Cortical Circuit for Depression- and Anxiety-Related Behaviors Mediated by Cholecystokinin: Role of ΔFosB. Journal of Neuroscience, 2014, 34, 3878-3887.	1.7	256
89	Dopaminergic dynamics underlying sex-specific cocaine reward. Nature Communications, 2017, 8, 13877.	5.8	256
90	CREB (cAMP Response Element-Binding Protein) in the Locus Coeruleus: Biochemical, Physiological, and Behavioral Evidence for a Role in Opiate Dependence. Journal of Neuroscience, 1997, 17, 7890-7901.	1.7	253

#	Article	IF	CITATIONS
91	HDAC2 regulates atypical antipsychotic responses through the modulation of mGlu2 promoter activity. Nature Neuroscience, 2012, 15, 1245-1254.	7.1	247
92	Cocaine Regulates MEF2 to Control Synaptic and Behavioral Plasticity. Neuron, 2008, 59, 621-633.	3.8	246
93	A Role for Repressive Histone Methylation in Cocaine-Induced Vulnerability to Stress. Neuron, 2011, 71, 656-670.	3.8	245
94	β-catenin mediates stress resilience through Dicer1/microRNA regulation. Nature, 2014, 516, 51-55.	13.7	243
95	An essential role for ΔFosB in the nucleus accumbens in morphine action. Nature Neuroscience, 2006, 9, 205-211.	7.1	237
96	Epigenetic Basis of Mental Illness. Neuroscientist, 2016, 22, 447-463.	2.6	236
97	Epigenetic Mechanisms of Depression and Antidepressant Action. Annual Review of Pharmacology and Toxicology, 2013, 53, 59-87.	4.2	232
98	Nuclear Factor κB Signaling Regulates Neuronal Morphology and Cocaine Reward. Journal of Neuroscience, 2009, 29, 3529-3537.	1.7	228
99	The Molecular Basis of Drug Addiction: Linking Epigenetic to Synaptic and Circuit Mechanisms. Neuron, 2019, 102, 48-59.	3.8	223
100	ΔFosB Mediates Epigenetic Desensitization of the c- <i>fos</i> Gene After Chronic Amphetamine Exposure. Journal of Neuroscience, 2008, 28, 7344-7349.	1.7	222
101	Rapid Communication Chronic Ingestion of Ethanol Upâ€Regulates NMDAR1 Receptor Subunit Immunoreactivity in Rat Hippocampus. Journal of Neurochemistry, 1994, 62, 1635-1638.	2.1	219
102	Granulocyte-colony stimulating factor controls neural and behavioral plasticity in response to cocaine. Nature Communications, 2018, 9, 9.	5.8	213
103	Orexin Signaling Mediates the Antidepressant-Like Effect of Calorie Restriction. Journal of Neuroscience, 2008, 28, 3071-3075.	1.7	211
104	ΔFosB Induction in Striatal Medium Spiny Neuron Subtypes in Response to Chronic Pharmacological, Emotional, and Optogenetic Stimuli. Journal of Neuroscience, 2013, 33, 18381-18395.	1.7	211
105	Cellular basis of memory for addiction. Dialogues in Clinical Neuroscience, 2013, 15, 431-443.	1.8	209
106	ΔFosB: a molecular mediator of long-term neural and behavioral plasticity1Published on the World Wide Web on 27 November 1998.1. Brain Research, 1999, 835, 10-17.	1.1	208
107	Δ <i>FosB</i> Regulates Wheel Running. Journal of Neuroscience, 2002, 22, 8133-8138.	1.7	208
108	Alterations of the Host Microbiome Affect Behavioral Responses to Cocaine. Scientific Reports, 2016, 6, 35455.	1.6	208

#	Article	IF	CITATIONS
109	Regulation of G proteins by chronic morphine in the rat locus coeruleus. Brain Research, 1989, 476, 230-239.	1.1	202
110	Morphine and Cocaine Exert Common Chronic Actions on Tyrosine Hydroxylase in Dopaminergic Brain Reward Regions. Journal of Neurochemistry, 1991, 57, 344-347.	2.1	202
111	Striatal Cell Type-Specific Overexpression of ΔFosB Enhances Incentive for Cocaine. Journal of Neuroscience, 2003, 23, 2488-2493.	1.7	196
112	Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nature Neuroscience, 2014, 17, 1720-1727.	7.1	193
113	Regional and Cellular Mapping of cAMP Response Element-Mediated Transcription during Naltrexone-Precipitated Morphine Withdrawal. Journal of Neuroscience, 2002, 22, 3663-3672.	1.7	190
114	The epigenetic landscape of addiction. Annals of the New York Academy of Sciences, 2011, 1216, 99-113.	1.8	190
115	IRS2-Akt pathway in midbrain dopamine neurons regulates behavioral and cellular responses to opiates. Nature Neuroscience, 2007, 10, 93-99.	7.1	188
116	Regulation of Cyclic AMP Response Element-Binding Protein (CREB) Phosphorylation by Acute and Chronic Morphine in the Rat Locus Coeruleus. Journal of Neurochemistry, 1992, 58, 1168-1171.	2.1	186
117	Neurobiological Sequelae of Witnessing Stressful Events in Adult Mice. Biological Psychiatry, 2013, 73, 7-14.	0.7	181
118	Cocaine dynamically regulates heterochromatin and repetitive element unsilencing in nucleus accumbens. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3035-3040.	3.3	179
119	Stress and CRF gate neural activation of BDNF in the mesolimbic reward pathway. Nature Neuroscience, 2014, 17, 27-29.	7.1	178
120	Establishment of a repeated social defeat stress model in female mice. Scientific Reports, 2017, 7, 12838.	1.6	176
121	Behavioral and Structural Responses to Chronic Cocaine Require a Feedforward Loop Involving ΔFosB and Calcium/Calmodulin-Dependent Protein Kinase II in the Nucleus Accumbens Shell. Journal of Neuroscience, 2013, 33, 4295-4307.	1.7	175
122	Neurobiology of Resilience: Interface Between Mind and Body. Biological Psychiatry, 2019, 86, 410-420.	0.7	175
123	Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients With COVID-19 in New York City: Model Development and Validation. Journal of Medical Internet Research, 2020, 22, e24018.	2.1	174
124	Induction of the c-fos proto-oncogene during opiate withdrawal in the locus coeruleus and other regions of rat brain. Brain Research, 1990, 525, 256-266.	1.1	173
125	Regulation of Drug Reward by cAMP Response Element-Binding Protein: Evidence for Two Functionally Distinct Subregions of the Ventral Tegmental Area. Journal of Neuroscience, 2005, 25, 5553-5562.	1.7	172
126	BDNF Is a Negative Modulator of Morphine Action. Science, 2012, 338, 124-128.	6.0	167

#	Article	IF	CITATIONS
127	â^†FosB differentially modulates nucleus accumbens direct and indirect pathway function. Proceedings of the United States of America, 2013, 110, 1923-1928.	3.3	167
128	Neurotrophic Mechanisms in Drug Addiction. NeuroMolecular Medicine, 2004, 5, 069-084.	1.8	164
129	Essential Role of Mesolimbic Brain-Derived Neurotrophic Factor in Chronic Social Stress–Induced Depressive Behaviors. Biological Psychiatry, 2016, 80, 469-478.	0.7	164
130	Rac1 is essential in cocaine-induced structural plasticity of nucleus accumbens neurons. Nature Neuroscience, 2012, 15, 891-896.	7.1	160
131	Role of Tet1 and 5-hydroxymethylcytosine in cocaine action. Nature Neuroscience, 2015, 18, 536-544.	7.1	160
132	AKT Signaling within the Ventral Tegmental Area Regulates Cellular and Behavioral Responses to Stressful Stimuli. Biological Psychiatry, 2008, 64, 691-700.	0.7	156
133	A Silent Synapse-Based Mechanism for Cocaine-Induced Locomotor Sensitization. Journal of Neuroscience, 2011, 31, 8163-8174.	1.7	156
134	NEUROBIOLOGY: Total Recall-the Memory of Addiction. Science, 2001, 292, 2266-2267.	6.0	155
135	ΔFosB accumulates in a GABAergic cell population in the posterior tail of the ventral tegmental area after psychostimulant treatment. European Journal of Neuroscience, 2005, 21, 2817-2824.	1.2	153
136	Environmental Enrichment Produces a Behavioral Phenotype Mediated by Low Cyclic Adenosine Monophosphate Response Element Binding (CREB) Activity in the Nucleus Accumbens. Biological Psychiatry, 2010, 67, 28-35.	0.7	152
137	Chronic cocaine-regulated epigenomic changes in mouse nucleus accumbens. Genome Biology, 2014, 15, R65.	13.9	151
138	Regulation of Gene Expression by Chronic Morphine and Morphine Withdrawal in the Locus Ceruleus and Ventral Tegmental Area. Journal of Neuroscience, 2005, 25, 6005-6015.	1.7	150
139	A Novel Role of the WNT-Dishevelled-GSK3Â Signaling Cascade in the Mouse Nucleus Accumbens in a Social Defeat Model of Depression. Journal of Neuroscience, 2011, 31, 9084-9092.	1.7	149
140	Epigenetic Mechanisms of Depression. JAMA Psychiatry, 2014, 71, 454.	6.0	149
141	Opposing mechanisms mediate morphine- and cocaine-induced generation of silent synapses. Nature Neuroscience, 2016, 19, 915-925.	7.1	149
142	Hippocampal-dependent antidepressant-like activity of histone deacetylase inhibition. Neuroscience Letters, 2011, 493, 122-126.	1.0	148
143	DNA methyltransferase DNMT3a contributes to neuropathic pain by repressing Kcna2 in primary afferent neurons. Nature Communications, 2017, 8, 14712.	5.8	148
144	â^†FosB: A transcriptional regulator of stress and antidepressant responses. European Journal of Pharmacology, 2015, 753, 66-72.	1.7	146

#	Article	IF	CITATIONS
145	Epigenetic Mechanisms of Opioid Addiction. Biological Psychiatry, 2020, 87, 22-33.	0.7	146
146	Epigenetic signaling in psychiatric disorders: stress and depression. Dialogues in Clinical Neuroscience, 2014, 16, 281-295.	1.8	146
147	Class I HDAC inhibition blocks cocaine-induced plasticity by targeted changes in histone methylation. Nature Neuroscience, 2013, 16, 434-440.	7.1	145
148	Regulation of anxiety and initiation of sexual behavior by CREB in the nucleus accumbens. Proceedings of the United States of America, 2005, 102, 8357-8362.	3.3	144
149	Effects of Striatal ΔFosB Overexpression and Ketamine on Social Defeat Stress–Induced Anhedonia in Mice. Biological Psychiatry, 2014, 76, 550-558.	0.7	144
150	MicroRNAs 146a/b-5 and 425-3p and 24-3p are markers of antidepressant response and regulate MAPK/Wnt-system genes. Nature Communications, 2017, 8, 15497.	5.8	144
151	Role for GDNF in Biochemical and Behavioral Adaptations to Drugs of Abuse. Neuron, 2000, 26, 247-257.	3.8	143
152	Dopaminergic brain reward regions of Lewis and Fischer rats display different levels of tyrosine hydroxylase and other morphine- and cocaine-regulated phosphoproteins. Brain Research, 1991, 561, 147-150.	1.1	142
153	The Addicted Brain. Scientific American, 2004, 290, 78-85.	1.0	142
154	The Influence of ΔFosB in the Nucleus Accumbens on Natural Reward-Related Behavior. Journal of Neuroscience, 2008, 28, 10272-10277.	1.7	141
155	Molecular control of locus coeruleus neurotransmission. Biological Psychiatry, 1999, 46, 1131-1139.	0.7	140
156	Neural Substrates of Depression and Resilience. Neurotherapeutics, 2017, 14, 677-686.	2.1	139
157	Role of DNA Methylation in the Nucleus Accumbens in Incubation of Cocaine Craving. Journal of Neuroscience, 2015, 35, 8042-8058.	1.7	137
158	Early life stress alters transcriptomic patterning across reward circuitry in male and female mice. Nature Communications, 2019, 10, 5098.	5.8	136
159	Epigenetic Signaling in Psychiatric Disorders. Journal of Molecular Biology, 2014, 426, 3389-3412.	2.0	135
160	Brain-wide Electrical Spatiotemporal Dynamics Encode Depression Vulnerability. Cell, 2018, 173, 166-180.e14.	13.5	135
161	Enduring Deficits in Brain Reward Function after Chronic Social Defeat in Rats: Susceptibility, Resilience, and Antidepressant Response. Biological Psychiatry, 2014, 76, 542-549.	0.7	134
162	Behavioral sensitization to cocaine: modulation by the cyclic AMP system in the nucleus accumbens. Brain Research, 1995, 674, 299-306.	1.1	133

#	Article	IF	CITATIONS
163	Use of herpes virus amplicon vectors to study brain disorders. BioTechniques, 2005, 39, 381-391.	0.8	133
164	The methyltransferase SETDB1 regulates a large neuron-specific topological chromatin domain. Nature Genetics, 2017, 49, 1239-1250.	9.4	133
165	Neuroanatomic Differences Associated With Stress Susceptibility and Resilience. Biological Psychiatry, 2016, 79, 840-849.	0.7	132
166	Cocaine Self-administration Alters Transcriptome-wide Responses in the Brain's Reward Circuitry. Biological Psychiatry, 2018, 84, 867-880.	0.7	132
167	SIRT1 Mediates Depression-Like Behaviors in the Nucleus Accumbens. Journal of Neuroscience, 2016, 36, 8441-8452.	1.7	127
168	Coordinate Regulation of the Cyclic AMP System with Firing Rate and Expression of Tyrosine Hydroxylase in the Rat Locus Coeruleus: Effects of Chronic Stress and Drug Treatments. Journal of Neurochemistry, 1992, 58, 494-502.	2.1	125
169	The neural rejuvenation hypothesis of cocaine addiction. Trends in Pharmacological Sciences, 2014, 35, 374-383.	4.0	125
170	Transcriptional Mechanisms of Drug Addiction. Clinical Psychopharmacology and Neuroscience, 2012, 10, 136-143.	0.9	125
171	Induction of nuclear factor-l°B in nucleus accumbens by chronic cocaine administration. Journal of Neurochemistry, 2008, 79, 221-224.	2.1	124
172	Opposite Modulation of Opiate Withdrawal Behaviors on Microinfusion of a Protein Kinase A Inhibitor Versus Activator into the Locus Coeruleus or Periaqueductal Gray. Journal of Neuroscience, 1997, 17, 8520-8527.	1.7	123
173	ΔFosB Induction in Orbitofrontal Cortex Mediates Tolerance to Cocaine-Induced Cognitive Dysfunction. Journal of Neuroscience, 2007, 27, 10497-10507.	1.7	123
174	Role for mTOR Signaling and Neuronal Activity in Morphine-Induced Adaptations in Ventral Tegmental Area Dopamine Neurons. Neuron, 2011, 72, 977-990.	3.8	122
175	Chronic Electroconvulsive Seizures Down?Regulate Expression of the Immediate-Early Genes c-fos and c-jun in Rat Cerebral Cortex. Journal of Neurochemistry, 1990, 54, 1920-1925.	2.1	119
176	Ketamine and Imipramine Reverse Transcriptional Signatures of Susceptibility and Induce Resilience-Specific Gene Expression Profiles. Biological Psychiatry, 2017, 81, 285-295.	0.7	118
177	Essential Role of the <i>fos</i> B Gene in Molecular, Cellular, and Behavioral Actions of Chronic Electroconvulsive Seizures. Journal of Neuroscience, 1998, 18, 6952-6962.	1.7	115
178	Role of Nuclear Factor κB in Ovarian Hormone-Mediated Stress Hypersensitivity in Female Mice. Biological Psychiatry, 2009, 65, 874-880.	0.7	115
179	Morphine Epigenomically Regulates Behavior through Alterations in Histone H3 Lysine 9 Dimethylation in the Nucleus Accumbens. Journal of Neuroscience, 2012, 32, 17454-17464.	1.7	115
180	Incubation of Methamphetamine Craving Is Associated with Selective Increases in Expression of <i>Bdnf</i> and <i>Trkb</i> , Glutamate Receptors, and Epigenetic Enzymes in Cue-Activated Fos-Expressing Dorsal Striatal Neurons. Journal of Neuroscience, 2015, 35, 8232-8244.	1.7	115

#	Article	IF	CITATIONS
181	Induction of ΔFosB in the Periaqueductal Gray by Stress Promotes Active Coping Responses. Neuron, 2007, 55, 289-300.	3.8	114
182	Essential Role of SIRT1 Signaling in the Nucleus Accumbens in Cocaine and Morphine Action. Journal of Neuroscience, 2013, 33, 16088-16098.	1.7	113
183	Proenkephalin Mediates the Enduring Effects of Adolescent Cannabis Exposure Associated with Adult Opiate Vulnerability. Biological Psychiatry, 2012, 72, 803-810.	0.7	110
184	Elevated basal firing rates and enhanced responses to 8-Br-cAMP in locus coeruleus neurons in brain slices from opiate-dependent rats. European Journal of Pharmacology, 1992, 211, 47-53.	1.7	109
185	Differential Regulation of Neurotrophin and <i>trk</i> Receptor mRNAs in Catecholaminergic Nuclei during Chronic Opiate Treatment and Withdrawal. Journal of Neuroscience, 1998, 18, 10700-10708.	1.7	109
186	Loss of BDNF Signaling in D1R-Expressing NAc Neurons Enhances Morphine Reward by Reducing GABA Inhibition. Neuropsychopharmacology, 2014, 39, 2646-2653.	2.8	109
187	Role of cAMP Response Element-Binding Protein in the Rat Locus Ceruleus: Regulation of Neuronal Activity and Opiate Withdrawal Behaviors. Journal of Neuroscience, 2006, 26, 4624-4629.	1.7	108
188	DCC Confers Susceptibility to Depression-like Behaviors in Humans and Mice and Is Regulated by miR-218. Biological Psychiatry, 2017, 81, 306-315.	0.7	108
189	Tropomyosin-Related Kinase B in the Mesolimbic Dopamine System: Region-Specific Effects on Cocaine Reward. Biological Psychiatry, 2009, 65, 696-701.	0.7	107
190	Overexpression of CREB in the Nucleus Accumbens Shell Increases Cocaine Reinforcement in Self-Administering Rats. Journal of Neuroscience, 2011, 31, 16447-16457.	1.7	107
191	The critical importance of basic animal research for neuropsychiatric disorders. Neuropsychopharmacology, 2019, 44, 1349-1353.	2.8	106
192	Induction of Cyclin-Dependent Kinase 5 in the Hippocampus by Chronic Electroconvulsive Seizures: Role of ΔFosB. Journal of Neuroscience, 2000, 20, 8965-8971.	1.7	105
193	In Vivo Fiber Photometry Reveals Signature of Future Stress Susceptibility in Nucleus Accumbens. Neuropsychopharmacology, 2018, 43, 255-263.	2.8	105
194	A β3-Adrenergic-Leptin-Melanocortin Circuit Regulates Behavioral and Metabolic Changes Induced by Chronic Stress. Biological Psychiatry, 2010, 67, 1075-1082.	0.7	104
195	Epigenetic mechanisms of drug addiction. Current Opinion in Neurobiology, 2013, 23, 521-528.	2.0	102
196	Methyl Supplementation Attenuates Cocaine-Seeking Behaviors and Cocaine-Induced c-Fos Activation in a DNA Methylation-Dependent Manner. Journal of Neuroscience, 2015, 35, 8948-8958.	1.7	101
197	Natural and Drug Rewards Act on Common Neural Plasticity Mechanisms with ΔFosB as a Key Mediator. Journal of Neuroscience, 2013, 33, 3434-3442.	1.7	100
198	Analytical tools and current challenges in the modern era of neuroepigenomics. Nature Neuroscience, 2014, 17, 1476-1490.	7.1	100

#	Article	IF	CITATIONS
199	Molecular Neurobiology of Drug Addiction. Neuropsychopharmacology, 1994, 11, 77-87.	2.8	99
200	ÂFosB in the Nucleus Accumbens Regulates Food-Reinforced Instrumental Behavior and Motivation. Journal of Neuroscience, 2006, 26, 9196-9204.	1.7	98
201	Orexin signaling in GABAergic lateral habenula neurons modulates aggressive behavior in male mice. Nature Neuroscience, 2020, 23, 638-650.	7.1	98
202	Sex-Specific Role for the Long Non-coding RNA LINC00473 in Depression. Neuron, 2020, 106, 912-926.e5.	3.8	98
203	SIRT1-FOXO3a Regulate Cocaine Actions in the Nucleus Accumbens. Journal of Neuroscience, 2015, 35, 3100-3111.	1.7	97
204	Subregional, Dendritic Compartment, and Spine Subtype Specificity in Cocaine Regulation of Dendritic Spines in the Nucleus Accumbens. Journal of Neuroscience, 2012, 32, 6957-6966.	1.7	96
205	Chronic Ethanol Administration Regulates the Expression of GABA _A Receptor α ₁ and α ₅ Subunits in the Ventral Tegmental Area and Hippocampus. Journal of Neurochemistry, 1997, 68, 121-127.	2.1	95
206	From synapse to nucleus: Novel targets for treating depression. Neuropharmacology, 2010, 58, 683-693.	2.0	94
207	Targeted Epigenetic Remodeling of the <i>Cdk5</i> Gene in Nucleus Accumbens Regulates Cocaine- and Stress-Evoked Behavior. Journal of Neuroscience, 2016, 36, 4690-4697.	1.7	93
208	Viral tools for neuroscience. Nature Reviews Neuroscience, 2020, 21, 669-681.	4.9	93
209	Histone acetylation in drug addiction. Seminars in Cell and Developmental Biology, 2009, 20, 387-394.	2.3	92
210	Long-Term Behavioral Effects of Post-weaning Social Isolation in Males and Females. Frontiers in Behavioral Neuroscience, 2019, 13, 66.	1.0	92
211	Epigenetic basis of opiate suppression of Bdnf gene expression in the ventral tegmental area. Nature Neuroscience, 2015, 18, 415-422.	7.1	91
212	Fluoxetine Epigenetically Alters the CaMKIIα Promoter in Nucleus Accumbens to Regulate ΔFosB Binding and Antidepressant Effects. Neuropsychopharmacology, 2014, 39, 1178-1186.	2.8	90
213	Region-specific induction of ?FosB by repeated administration of typical versus atypical antipsychotic drugs. Synapse, 1999, 33, 118-128.	0.6	89
214	Striatal Overexpression of ΔJunD Resets L-DOPA-Induced Dyskinesia in a Primate Model of Parkinson Disease. Biological Psychiatry, 2009, 66, 554-561.	0.7	89
215	Opiate-Induced Molecular and Cellular Plasticity of Ventral Tegmental Area and Locus Coeruleus Catecholamine Neurons. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a012070-a012070.	2.9	88
216	Biochemical adaptations in the mesolimbic dopamine system in response to heroin self-administration. Synapse, 1995, 21, 312-318.	0.6	87

#	Article	IF	CITATIONS
217	Extracellular Signal-Regulated Kinase-2 within the Ventral Tegmental Area Regulates Responses to Stress. Journal of Neuroscience, 2010, 30, 7652-7663.	1.7	87
218	Nucleus accumbens dopamine mediates amphetamine-induced impairment of social bonding in a monogamous rodent species. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1217-1222.	3.3	86
219	Epigenetic suppression of hippocampal calbindin-D28k by ΔFosB drives seizure-related cognitive deficits. Nature Medicine, 2017, 23, 1377-1383.	15.2	86
220	ΔFosB Regulates Gene Expression and Cognitive Dysfunction in a Mouse Model of Alzheimer's Disease. Cell Reports, 2017, 20, 344-355.	2.9	85
221	Epigenetics and addiction. Current Opinion in Neurobiology, 2019, 59, 128-136.	2.0	85
222	Altered Sensitivity to Rewarding and Aversive Drugs in Mice with Inducible Disruption of cAMP Response Element-Binding Protein Function within the Nucleus Accumbens. Journal of Neuroscience, 2009, 29, 1855-1859.	1.7	84
223	Increased Impulsivity during Withdrawal from Cocaine Self-Administration: Role for ÂFosB in the Orbitofrontal Cortex. Cerebral Cortex, 2009, 19, 435-444.	1.6	84
224	ACF chromatin-remodeling complex mediates stress-induced depressive-like behavior. Nature Medicine, 2015, 21, 1146-1153.	15.2	83
225	Estrogen receptor α drives pro-resilient transcription in mouse models of depression. Nature Communications, 2018, 9, 1116.	5.8	83
226	Cell-Type-Specific Epigenetic Editing at the Fosb Gene Controls Susceptibility to Social Defeat Stress. Neuropsychopharmacology, 2018, 43, 272-284.	2.8	83
227	Nerve impulses increase the phosphorylation state of protein I in rabbit superior cervical ganglion. Nature, 1982, 296, 452-454.	13.7	82
228	Induction of Activating Transcription Factors (ATFs) ATF2, ATF3, and ATF4 in the Nucleus Accumbens and Their Regulation of Emotional Behavior. Journal of Neuroscience, 2008, 28, 2025-2032.	1.7	82
229	Regulation of CRE-mediated transcription in mouse brain by amphetamine. Synapse, 2003, 48, 10-17.	0.6	81
230	Serum Response Factor Promotes Resilience to Chronic Social Stress through the Induction of ΔFosB. Journal of Neuroscience, 2010, 30, 14585-14592.	1.7	81
231	Regulation of ÂFosB Stability by Phosphorylation. Journal of Neuroscience, 2006, 26, 5131-5142.	1.7	80
232	The role of ventral striatal cAMP signaling in stress-induced behaviors. Nature Neuroscience, 2015, 18, 1094-1100.	7.1	80
233	Role of the Brain's Reward Circuitry in Depression. International Review of Neurobiology, 2015, 124, 151-170.	0.9	80
234	Regulation of chromatin states by drugs of abuse. Current Opinion in Neurobiology, 2015, 30, 112-121.	2.0	80

#	Article	IF	CITATIONS
235	Proteasome-dependent and -independent mechanisms for FosB destabilization: identification of FosB degron domains and implications for ΔFosB stability. European Journal of Neuroscience, 2007, 25, 3009-3019.	1.2	79
236	G9a influences neuronal subtype specification in striatum. Nature Neuroscience, 2014, 17, 533-539.	7.1	78
237	Stress resilience is promoted by a Zfp189-driven transcriptional network in prefrontal cortex. Nature Neuroscience, 2019, 22, 1413-1423.	7.1	78
238	Inhibition of Cdk5 in the nucleus accumbens enhances the locomotor-activating and incentive-motivational effects of cocaine. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4147-4152.	3.3	77
239	Stress makes its molecular mark. Nature, 2012, 490, 171-172.	13.7	76
240	Neuroepigenetics and addiction. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 148, 747-765.	1.0	76
241	Role of Mesolimbic Brain-Derived Neurotrophic Factor in Depression. Biological Psychiatry, 2019, 86, 738-748.	0.7	76
242	Environmental Programming of Susceptibility and Resilience to Stress in Adulthood in Male Mice. Frontiers in Behavioral Neuroscience, 2019, 13, 40.	1.0	76
243	Serum Response Factor and cAMP Response Element Binding Protein Are Both Required for Cocaine Induction of ΔFosB. Journal of Neuroscience, 2012, 32, 7577-7584.	1.7	75
244	Brain-Derived Neurotrophic Factor in the Mesolimbic Reward Circuitry Mediates Nociception in Chronic Neuropathic Pain. Biological Psychiatry, 2017, 82, 608-618.	0.7	75
245	Herpes Simplex Virus-Mediated Gene Transfer As a Tool for Neuropsychiatric Research. Critical Reviews in Neurobiology, 2000, 14, 20.	3.3	75
246	Unraveling the epigenetic landscape of depression: focus on early life stress. Dialogues in Clinical Neuroscience, 2019, 21, 341-357.	1.8	75
247	Bidirectional Synaptic Structural Plasticity after Chronic Cocaine Administration Occurs through Rap1 Small GTPase Signaling. Neuron, 2016, 89, 566-582.	3.8	73
248	Regulation of GluR2 promoter activity by neurotrophic factors via a neuron-restrictive silencer element. European Journal of Neuroscience, 2000, 12, 1525-1533.	1.2	72
249	Chromatin regulation in drug addiction and depression. Dialogues in Clinical Neuroscience, 2009, 11, 257-268.	1.8	72
250	Endogenous ADP-Ribosylation in Brain: Initial Characterization of Substrate Proteins. Journal of Neurochemistry, 1991, 57, 2124-2132.	2.1	71
251	Transgenerational Epigenetic Contributions to Stress Responses: Fact or Fiction?. PLoS Biology, 2016, 14, e1002426.	2.6	70
252	Striatal regulation of ΔFosB, FosB, and cFos during cocaine selfâ€administration and withdrawal. Journal of Neurochemistry, 2010, 115, 112-122.	2.1	68

#	Article	IF	CITATIONS
253	Regulation of fosB and ΔfosB mRNA expression: In vivo and in vitro studies. Brain Research, 2007, 1143, 22-33.	1.1	67
254	Understanding the epigenetic basis of sex differences in depression. Journal of Neuroscience Research, 2017, 95, 692-702.	1.3	67
255	Shared Transcriptional Signatures in Major Depressive Disorder and Mouse Chronic Stress Models. Biological Psychiatry, 2020, 88, 159-168.	0.7	67
256	CREB Modulates the Functional Output of Nucleus Accumbens Neurons. Journal of Biological Chemistry, 2008, 283, 2751-2760.	1.6	66
257	Hippocampal HDAC4 Contributes to Postnatal Fluoxetine-Evoked Depression-Like Behavior. Neuropsychopharmacology, 2014, 39, 2221-2232.	2.8	65
258	Progress in Epigenetics of Depression. Progress in Molecular Biology and Translational Science, 2018, 157, 41-66.	0.9	65
259	Silent synapses dictate cocaine memory destabilization and reconsolidation. Nature Neuroscience, 2020, 23, 32-46.	7.1	65
260	ΔFosB-Mediated Alterations in Dopamine Signaling Are Normalized by a Palatable High-Fat Diet. Biological Psychiatry, 2008, 64, 941-950.	0.7	64
261	Epigenetic Mechanisms in Psychiatry. Biological Psychiatry, 2009, 65, 189-190.	0.7	64
262	Differential induction of FosB isoforms throughout the brain by fluoxetine and chronic stress. Neuropharmacology, 2015, 99, 28-37.	2.0	64
263	Multidimensional Predictors of Susceptibility and Resilience to Social Defeat Stress. Biological Psychiatry, 2019, 86, 483-491.	0.7	64
264	Long-term behavioral and cell-type-specific molecular effects of early life stress are mediated by H3K79me2 dynamics in medium spiny neurons. Nature Neuroscience, 2021, 24, 667-676.	7.1	64
265	Early life social stress induced changes in depression and anxiety associated neural pathways which are correlated with impaired maternal care. Neuropeptides, 2015, 52, 103-111.	0.9	62
266	Nucleus accumbens feedforward inhibition circuit promotes cocaine self-administration. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8750-E8759.	3.3	62
267	Inducible and Brain Region-Specific CREB Transgenic Mice. Molecular Pharmacology, 2002, 61, 1453-1464.	1.0	61
268	Induction of Inducible cAMP Early Repressor Expression in Nucleus Accumbens by Stress or Amphetamine Increases Behavioral Responses to Emotional Stimuli. Journal of Neuroscience, 2006, 26, 8235-8242.	1.7	61
269	Phospholipase Cγ in Distinct Regions of the Ventral Tegmental Area Differentially Modulates Mood-Related Behaviors. Journal of Neuroscience, 2003, 23, 7569-7576.	1.7	59
270	Mapping Brain Metabolic Connectivity in Awake Rats with μPET and Optogenetic Stimulation. Journal of Neuroscience, 2013, 33, 6343-6349.	1.7	57

#	Article	IF	CITATIONS
271	Cocaine Triggers Astrocyte-Mediated Synaptogenesis. Biological Psychiatry, 2021, 89, 386-397.	0.7	57
272	Midbrain projection to the basolateral amygdala encodes anxiety-like but not depression-like behaviors. Nature Communications, 2022, 13, 1532.	5.8	56
273	Stress and Cocaine Trigger Divergent and Cell Type–Specific Regulation of Synaptic Transmission at Single Spines in Nucleus Accumbens. Biological Psychiatry, 2016, 79, 898-905.	0.7	54
274	Activator Protein-1: redox switch controlling structure and DNA-binding. Nucleic Acids Research, 2017, 45, 11425-11436.	6.5	54
275	α1- and β3-Adrenergic Receptor–Mediated Mesolimbic Homeostatic Plasticity Confers Resilience to Social Stress in Susceptible Mice. Biological Psychiatry, 2019, 85, 226-236.	0.7	53
276	Essential role of poly(ADP-ribosyl)ation in cocaine action. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2005-2010.	3.3	52
277	<i>Fosb</i> gene products contribute to excitotoxic microglial activation by regulating the expression of complement C5a receptors in microglia. Glia, 2014, 62, 1284-1298.	2.5	52
278	Histone arginine methylation in cocaine action in the nucleus accumbens. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9623-9628.	3.3	52
279	Cell-Type-Specific Role of ΔFosB in Nucleus Accumbens In Modulating Intermale Aggression. Journal of Neuroscience, 2018, 38, 5913-5924.	1.7	52
280	Essential role of the cAMP-cAMP response-element binding protein pathway in opiate-induced homeostatic adaptations of locus coeruleus neurons. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17011-17016.	3.3	51
281	MiR-218: a molecular switch and potential biomarker of susceptibility to stress. Molecular Psychiatry, 2020, 25, 951-964.	4.1	51
282	Influence of Cocaine on the JAK–STAT Pathway in the Mesolimbic Dopamine System. Journal of Neuroscience, 1996, 16, 8019-8026.	1.7	50
283	Tet1 in Nucleus Accumbens Opposes Depression- and Anxiety-Like Behaviors. Neuropsychopharmacology, 2017, 42, 1657-1669.	2.8	50
284	Molecular and functional analysis of hyperpolarizationâ€activated pacemaker channels in the hippocampus after entorhinal cortex lesion. FASEB Journal, 2001, 15, 2689-2701.	0.2	49
285	Potential Utility of Optogenetics in the Study of Depression. Biological Psychiatry, 2012, 71, 1068-1074.	0.7	49
286	A Role for Mitogen- and Stress-Activated Kinase 1 in L-DOPA –Induced Dyskinesia and â^†FosB Expression. Biological Psychiatry, 2016, 79, 362-371.	0.7	48
287	Overexpression of the Histone Dimethyltransferase G9a in Nucleus Accumbens Shell Increases Cocaine Self-Administration, Stress-Induced Reinstatement, and Anxiety. Journal of Neuroscience, 2018, 38, 803-813.	1.7	48
288	CRACKing the histone code: Cocaine's effects on chromatin structure and function. Hormones and Behavior, 2011, 59, 321-330.	1.0	47

#	Article	IF	CITATIONS
289	Cocaine-Induced Chromatin Modifications Associate With Increased Expression and Three-Dimensional Looping of Auts2. Biological Psychiatry, 2017, 82, 794-805.	0.7	47
290	Overexpression of DeltaFosB in nucleus accumbens mimics the protective addiction phenotype, but not the protective depression phenotype of environmental enrichment. Frontiers in Behavioral Neuroscience, 2014, 8, 297.	1.0	46
291	ΔFosB Enhances the Rewarding Effects of Cocaine While Reducing the Pro-Depressive Effects of the Kappa-Opioid Receptor Agonist U50488. Biological Psychiatry, 2012, 71, 44-50.	0.7	45
292	Aberrant H3.3 dynamics in NAc promote vulnerability to depressive-like behavior. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12562-12567.	3.3	44
293	Reflections on: "A general role for adaptations in G-Proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function― Brain Research, 2016, 1645, 71-74.	1.1	44
294	In vivo locus-specific editing of the neuroepigenome. Nature Reviews Neuroscience, 2020, 21, 471-484.	4.9	44
295	Chronic Administration of Lithium or Other Antidepressants Increases Levels of DARPP-32 in Rat Frontal Cortex. Journal of Neurochemistry, 1992, 59, 1164-1167.	2.1	43
296	Regulation of Phospholipase CÎ ³ in the Mesolimbic Dopamine System by Chronic Morphine Administration. Journal of Neurochemistry, 2002, 73, 1520-1528.	2.1	42
297	Increased cyclic GMP levels associated with contraction in muscle fibres of the giant barnacle. Nature, 1977, 267, 534-536.	13.7	41
298	Dimerization and DNA-Binding Properties of the Transcription Factor ΔFosB. Biochemistry, 2007, 46, 8360-8372.	1.2	41
299	Drug Experience Epigenetically Primes Fosb Gene Inducibility in Rat Nucleus Accumbens. Journal of Neuroscience, 2012, 32, 10267-10272.	1.7	41
300	Transcriptional and physiological adaptations in nucleus accumbens somatostatin interneurons that regulate behavioral responses to cocaine. Nature Communications, 2018, 9, 3149.	5.8	41
301	AMPA antagonist LY293558 blocks the development, without blocking the expression, of behavioral sensitization to morphine. Synapse, 1999, 31, 256-262.	0.6	40
302	Gene Network Dysregulation in Dorsolateral Prefrontal Cortex Neurons of Humans with Cocaine Use Disorder. Scientific Reports, 2017, 7, 5412.	1.6	40
303	Effects of the KCNQ channel opener ezogabine on functional connectivity of the ventral striatum and clinical symptoms in patients with major depressive disorder. Molecular Psychiatry, 2020, 25, 1323-1333.	4.1	40
304	Regulation of neuronal nitric oxide synthase by chronic ethanol ingestion. Synapse, 1995, 21, 93-95.	0.6	39
305	BAZ1B in Nucleus Accumbens Regulates Reward-Related Behaviors in Response to Distinct Emotional Stimuli. Journal of Neuroscience, 2016, 36, 3954-3961.	1.7	38
306	Meeting Report: Can We Make Animal Models of Human Mental Illness?. Biological Psychiatry, 2018, 84, 542-545.	0.7	38

#	Article	IF	CITATIONS
307	Methylation in OTX2 and related genes, maltreatment, and depression in children. Neuropsychopharmacology, 2018, 43, 2204-2211.	2.8	38
308	Re-silencing of silent synapses unmasks anti-relapse effects of environmental enrichment. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5089-5094.	3.3	37
309	Cooperative synaptic and intrinsic plasticity in a disynaptic limbic circuit drive stress-induced anhedonia and passive coping in mice. Molecular Psychiatry, 2021, 26, 1860-1879.	4.1	37
310	Key transcription factors mediating cocaine-induced plasticity in the nucleus accumbens. Molecular Psychiatry, 2022, 27, 687-709.	4.1	37
311	An emerging pathophysiology. Nature, 1997, 385, 578-579.	13.7	36
312	MeCP2 and drug addiction. Nature Neuroscience, 2010, 13, 1039-1041.	7.1	36
313	FosB Is Essential for the Enhancement of Stress Tolerance and Antagonizes Locomotor Sensitization by ΔFosB. Biological Psychiatry, 2011, 70, 487-495.	0.7	36
314	Voluntary wheel running promotes resilience to chronic social defeat stress in mice: a role for nucleus accumbens l"FosB. Neuropsychopharmacology, 2018, 43, 1934-1942.	2.8	36
315	Gadd45b mediates depressive-like role through DNA demethylation. Scientific Reports, 2019, 9, 4615.	1.6	36
316	The Netrin-1/DCC Guidance Cue Pathway as a Molecular Target in Depression: Translational Evidence. Biological Psychiatry, 2020, 88, 611-624.	0.7	36
317	Complement pathway changes at age 12 are associated with psychotic experiences at age 18 in a longitudinal population-based study: evidence for a role of stress. Molecular Psychiatry, 2021, 26, 524-533.	4.1	36
318	Long-term haloperidol administration enhances and short-term administration attenuates the behavioral effects of cocaine in a place conditioning procedure. Psychopharmacology, 1996, 128, 304-312.	1.5	35
319	ΔFosB induction in orbitofrontal cortex potentiates locomotor sensitization despite attenuating the cognitive dysfunction caused by cocaine. Pharmacology Biochemistry and Behavior, 2009, 93, 278-284.	1.3	35
320	Phf8 loss confers resistance to depression-like and anxiety-like behaviors in mice. Nature Communications, 2017, 8, 15142.	5.8	35
321	Role of Dorsal Striatum Histone Deacetylase 5 in Incubation of Methamphetamine Craving. Biological Psychiatry, 2018, 84, 213-222.	0.7	34
322	Sex-Specific Transcriptional Changes in Response to Adolescent Social Stress in the Brain's Reward Circuitry. Biological Psychiatry, 2022, 91, 118-128.	0.7	34
323	Repressive Epigenetic Changes at the <i>mGlu2</i> Promoter in Frontal Cortex of 5-HT _{2A} Knockout Mice. Molecular Pharmacology, 2013, 83, 1166-1175.	1.0	33
324	VGF and its C-terminal peptide TLQP-62 in ventromedial prefrontal cortex regulate depression-related behaviors and the response to ketamine. Neuropsychopharmacology, 2019, 44, 971-981.	2.8	33

#	Article	IF	CITATIONS
325	BDNF-TrkB controls cocaine-induced dendritic spines in rodent nucleus accumbens dissociated from increases in addictive behaviors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9469-9474.	3.3	32
326	Cell Typeâ€Specific Regulation of CREB Gene Expression: Mutational Analysis of CREB Promoter Activity. Journal of Neurochemistry, 1998, 71, 1865-1874.	2.1	31
327	Paternal transgenerational epigenetic mechanisms mediating stress phenotypes of offspring. European Journal of Neuroscience, 2021, 53, 271-280.	1.2	31
328	Cell-Type Specific Expression of p11 Controls Cocaine Reward. Biological Psychiatry, 2014, 76, 794-801.	0.7	30
329	Transcription Factor E2F3a in Nucleus Accumbens Affects Cocaine Action via Transcription and Alternative Splicing. Biological Psychiatry, 2018, 84, 167-179.	0.7	30
330	Dopaminergic Regulation of Nucleus Accumbens Cholinergic Interneurons Demarcates Susceptibility to Cocaine Addiction. Biological Psychiatry, 2020, 88, 746-757.	0.7	30
331	Nicotinic cholinergic stimulation increases cyclic GMP levels in vertebrate skeletal muscle. Nature, 1978, 275, 451-453.	13.7	29
332	Alterations in Nitric Oxide-Stimulated Endogenous ADP-Ribosylation Associated with Long-Term Potentiation in Rat Hippocampus. Journal of Neurochemistry, 1993, 61, 1542-1545.	2.1	29
333	Knockdown of the histone di-methyltransferase G9a in nucleus accumbens shell decreases cocaine self-administration, stress-induced reinstatement, and anxiety. Neuropsychopharmacology, 2019, 44, 1370-1376.	2.8	29
334	Cocaine-regulated microRNA miR-124 controls poly (ADP-ribose) polymerase-1 expression in neuronal cells. Scientific Reports, 2020, 10, 11197.	1.6	29
335	Morphine and cocaine increase serum―and glucocorticoidâ€inducible kinase 1 activity in the ventral tegmental area. Journal of Neurochemistry, 2015, 132, 243-253.	2.1	28
336	Cognition and Related Neural Findings on Methamphetamine Use Disorder: Insights and Treatment Implications From Schizophrenia Research. Frontiers in Psychiatry, 2019, 10, 880.	1.3	28
337	Biology and Bias in Cell Type-Specific RNAseq of Nucleus Accumbens Medium Spiny Neurons. Scientific Reports, 2019, 9, 8350.	1.6	27
338	Synaptic Microtubule-Associated Protein EB3 and SRC Phosphorylation Mediate Structural and Behavioral Adaptations During Withdrawal From Cocaine Self-Administration. Journal of Neuroscience, 2019, 39, 5634-5646.	1.7	27
339	Chronic stress and antidepressant treatment alter purine metabolism and beta oxidation within mouse brain and serum. Scientific Reports, 2020, 10, 18134.	1.6	27
340	Phylogenetic Survey of Proteins Related to Synapsin I and Biochemical Analysis of Four Such Proteins from Fish Brain. Journal of Neurochemistry, 1985, 45, 63-72.	2.1	26
341	Threonine 149 Phosphorylation Enhances ÂFosB Transcriptional Activity to Control Psychomotor Responses to Cocaine. Journal of Neuroscience, 2014, 34, 11461-11469.	1.7	26
342	Chronic Intermittent Hypoxia Enhances Pathological Tau Seeding, Propagation, and Accumulation and Exacerbates Alzheimer-like Memory and Synaptic Plasticity Deficits and Molecular Signatures. Biological Psychiatry, 2022, 91, 346-358.	0.7	26

#	Article	IF	CITATIONS
343	Astrocytes in cocaine addiction and beyond. Molecular Psychiatry, 2022, 27, 652-668.	4.1	26
344	WAVE1 in neurons expressing the D1 dopamine receptor regulates cellular and behavioral actions of cocaine. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1395-1400.	3.3	25
345	Drug-activated cells: From immediate early genes to neuronal ensembles in addiction. Advances in Pharmacology, 2021, 90, 173-216.	1.2	25
346	Regulation of ΔFosB transcriptional activity by Ser27 phosphorylation. European Journal of Neuroscience, 2007, 25, 224-230.	1.2	24
347	Regulation of impulsive and aggressive behaviours by a novel IncRNA. Molecular Psychiatry, 2021, 26, 3751-3764.	4.1	24
348	Nucleus Accumbens Medium Spiny Neuron Subtypes Differentially Regulate Stress-Associated Alterations in Sleep Architecture. Biological Psychiatry, 2021, 89, 1138-1149.	0.7	24
349	Poly (ADP-Ribose) Polymerase-1 (PARP-1) Induction by Cocaine Is Post-Transcriptionally Regulated by miR-125b. ENeuro, 2017, 4, ENEURO.0089-17.2017.	0.9	24
350	Small Molecule Screening Identifies Regulators of the Transcription Factor ΔFosB. ACS Chemical Neuroscience, 2012, 3, 546-556.	1.7	23
351	ΔFosB Induction in Prefrontal Cortex by Antipsychotic Drugs is Associated with Negative Behavioral Outcomes. Neuropsychopharmacology, 2014, 39, 538-544.	2.8	23
352	Role of Long Noncoding RNA Gas5 in Cocaine Action. Biological Psychiatry, 2020, 88, 758-766.	0.7	22
353	Regulation of Endogenous ADP-Ribosylation by Acute and Chronic Lithium in Rat Brain. Journal of Neurochemistry, 2002, 64, 2319-2324.	2.1	21
354	Epigenetic Priming in Drug Addiction. Cold Spring Harbor Symposia on Quantitative Biology, 2018, 83, 131-139.	2.0	21
355	Exercise Modalities Improve Aversive Memory and Survival Rate in Aged Rats: Role of Hippocampal Epigenetic Modifications. Molecular Neurobiology, 2019, 56, 8408-8419.	1.9	21
356	miR-218 in Adolescence Predicts and Mediates Vulnerability to Stress. Biological Psychiatry, 2021, 89, 911-919.	0.7	21
357	Identification of MARPP(14–20), morphine- and cyclic AMP-regulated phosphoproteins of 14–20 kDa, as myelin basic proteins: evidence for their acute and chronic regulation by morphine in rat brain. Brain Research, 1990, 516, 57-65.	1.1	20
358	Perinatal Malnutrition Leads to Sexually Dimorphic Behavioral Responses with Associated Epigenetic Changes in the Mouse Brain. Scientific Reports, 2017, 7, 11082.	1.6	20
359	The Resilient Phenotype Induced by Prophylactic Ketamine Exposure During Adolescence Is Mediated by the Ventral Tegmental Area–Nucleus Accumbens Pathway. Biological Psychiatry, 2021, 90, 482-493.	0.7	20
360	Genome-wide transcriptional profiling of central amygdala and orbitofrontal cortex during incubation of methamphetamine craving. Neuropsychopharmacology, 2018, 43, 2426-2434.	2.8	19

#	Article	IF	CITATIONS
361	Chronic Imipramine Administration Alters the Activity and Phosphorylation State of Tyrosine Hydroxylase in Dopaminergic Regions of Rat Brain. Neuropsychopharmacology, 1995, 12, 113-121.	2.8	18
362	Treating the Brain Deep Down: Brain surgery for anorexia nervosa?. Nature Medicine, 2013, 19, 678-679.	15.2	18
363	Withdrawal from repeated morphine administration augments expression of the RhoA network in the nucleus accumbens to control synaptic structure. Journal of Neurochemistry, 2018, 147, 84-98.	2.1	18
364	Beyond the neuron: Role of non-neuronal cells in stress disorders. Neuron, 2022, 110, 1116-1138.	3.8	18
365	Dishevelled-2 regulates cocaine-induced structural plasticity and Rac1 activity in the nucleus accumbens. Neuroscience Letters, 2015, 598, 23-28.	1.0	17
366	Neuroepigenetic Editing. Methods in Molecular Biology, 2018, 1767, 113-136.	0.4	17
367	Gene-Targeted, CREB-Mediated Induction of ΔFosB Controls Distinct Downstream Transcriptional Patterns Within D1 and D2 Medium Spiny Neurons. Biological Psychiatry, 2021, 90, 540-549.	0.7	17
368	ΔFOSB: A Potentially Druggable Master Orchestrator of Activity-Dependent Gene Expression. ACS Chemical Neuroscience, 2022, 13, 296-307.	1.7	17
369	Self-Administration of Ethanol, Cocaine, or Nicotine Does Not Decrease the Soma Size of Ventral Tegmental Area Dopamine Neurons. PLoS ONE, 2014, 9, e95962.	1.1	16
370	Genetics of methamphetamine use disorder: A systematic review and meta-analyses of gene association studies. Neuroscience and Biobehavioral Reviews, 2021, 120, 48-74.	2.9	16
371	Vitamin D deficiency exacerbates UV/endorphin and opioid addiction. Science Advances, 2021, 7, .	4.7	16
372	Downregulation of the CCAAT-Enhancer Binding Protein \hat{l}^2 in \hat{l}^2 FosB Transgenic Mice and by Electroconvulsive Seizures. Neuropsychopharmacology, 2004, 29, 23-31.	2.8	15
373	Effect of ΔFosB overexpression on opioid and cannabinoid receptor-mediated signaling in the nucleus accumbens. Neuropharmacology, 2011, 61, 1470-1476.	2.0	15
374	Cocaine-related DNA methylation in caudate neurons alters 3D chromatin structure of the IRXA gene cluster. Molecular Psychiatry, 2021, 26, 3134-3151.	4.1	15
375	Sex-Specific Role for SLIT1 in Regulating Stress Susceptibility. Biological Psychiatry, 2022, 91, 81-91.	0.7	15
376	Viral labeling of neurons synaptically connected to nucleus accumbens somatostatin interneurons. PLoS ONE, 2019, 14, e0213476.	1.1	14
377	Sperm Transcriptional State Associated with Paternal Transmission of Stress Phenotypes. Journal of Neuroscience, 2021, 41, 6202-6216.	1.7	14
378	<i>Fosb</i> Induction in Nucleus Accumbens by Cocaine Is Regulated by E2F3a. ENeuro, 2019, 6, ENEURO.0325-18.2019.	0.9	14

#	Article	IF	CITATIONS
379	Whole blood transcriptional signatures associated with rapid antidepressant response to ketamine in patients with treatment resistant depression. Translational Psychiatry, 2022, 12, 12.	2.4	14
380	HUMAN STUDY: FOSB proteins in the orbitofrontal and dorsolateral prefrontal cortices of human alcoholics. Addiction Biology, 2009, 14, 294-297.	1.4	13
381	Resilience to Stress and Resilience to Pain: Lessons from Molecular Neurobiology and Genetics. Trends in Molecular Medicine, 2020, 26, 924-935.	3.5	13
382	Computational Analysis of Multidimensional Behavioral Alterations After Chronic Social Defeat Stress. Biological Psychiatry, 2021, 89, 920-928.	0.7	13
383	A novel role for E2F3b in regulating cocaine action in the prefrontal cortex. Neuropsychopharmacology, 2019, 44, 776-784.	2.8	12
384	Integration of evidence across human and model organism studies: A meeting report. Genes, Brain and Behavior, 2021, 20, e12738.	1.1	12
385	Delta FosB and AP-1-mediated transcription modulate cannabinoid CB1 receptor signaling and desensitization in striatal and limbic brain regions. Biochemical Pharmacology, 2014, 91, 380-389.	2.0	11
386	A Novel Analytical Strategy to Identify Fusion Transcripts between Repetitive Elements and Protein Coding-Exons Using RNA-Seq. PLoS ONE, 2016, 11, e0159028.	1.1	11
387	Regulation of BAZ1A and nucleosome positioning in the nucleus accumbens in response to cocaine. Neuroscience, 2017, 353, 1-6.	1.1	11
388	The molecular basis for sex differences in depression susceptibility. Current Opinion in Behavioral Sciences, 2018, 23, 1-6.	2.0	11
389	AMPA and NMDA Receptor Trafficking at Cocaine-Generated Synapses. Journal of Neuroscience, 2021, 41, 1996-2011.	1.7	11
390	Regulation of neuronal PLCÎ ³ by chronic morphine. Brain Research, 2007, 1156, 9-20.	1.1	10
391	The origins of molecular psychiatry. Journal of Molecular Psychiatry, 2013, 1, 3.	2.0	10
392	Molecular, Cellular, and Circuit Basis of Depression Susceptibility and Resilience. , 2019, , 123-136.		9
393	The role of ΔfosB in the medial preoptic area: Differential effects of mating and cocaine history Behavioral Neuroscience, 2016, 130, 469-478.	0.6	8
394	Viral Expression of Epigenome Editing Tools in Rodent Brain Using Stereotaxic Surgery Techniques. Methods in Molecular Biology, 2018, 1767, 205-214.	0.4	8
395	Different adaptations of dopamine release in Nucleus Accumbens shell and core of individual alcohol drinking groups of mice. Neuropharmacology, 2020, 175, 108176.	2.0	8
396	Methylation of the tyrosine hydroxylase gene is dysregulated by cocaine dependence in the human striatum. IScience, 2021, 24, 103169.	1.9	8

#	Article	IF	CITATIONS
397	PSMC5, a 19S Proteasomal ATPase, Regulates Cocaine Action in the Nucleus Accumbens. PLoS ONE, 2015, 10, e0126710.	1.1	7
398	Crystallin Mu in Medial Amygdala Mediates the Effect of Social Experience on Cocaine Seeking in Males but Not in Females. Biological Psychiatry, 2022, 92, 895-906.	0.7	6
399	The Role of Deimination in Regenerative Reprogramming of Neurons. Molecular Neurobiology, 2019, 56, 2618-2639.	1.9	5
400	Comparative Transcriptional Analyses in the Nucleus Accumbens Identifies RGS2 as a Key Mediator of Depression-Related Behavior. Biological Psychiatry, 2022, 92, 942-951.	0.7	5
401	ΔFosB indirectly regulates Cck promoter activity. Brain Research, 2010, 1329, 10-20.	1.1	4
402	Human Transcriptome and Chromatin Modifications: An ENCODE Perspective. Genomics and Informatics, 2013, 11, 60.	0.4	4
403	Effects of gaboxadol on the expression of cocaine sensitization in rats Experimental and Clinical Psychopharmacology, 2016, 24, 131-141.	1.3	3
404	Stereotaxic Surgery and Viral Delivery of Zinc-Finger Epigenetic Editing Tools in Rodent Brain. Methods in Molecular Biology, 2018, 1867, 229-238.	0.4	3
405	Self-assembly of the bZIP transcription factor ΔFosB. Current Research in Structural Biology, 2020, 2, 1-13.	1.1	3
406	Long read, isoform aware sequencing of mouse nucleus accumbens after chronic cocaine treatment. Scientific Reports, 2021, 11, 6729.	1.6	3
407	Chronic Imipramine Administration Alters the Activity and Phosphorylation State of Tyrosine Hydroxylase in Dopaminergic Regions of Rat Brain. Neuropsychopharmacology, 1995, 12, 113-121.	2.8	3
408	Teenage drinking and adult neuropsychiatric disorders: An epigenetic connection. Science Advances, 2022, 8, eabq5934.	4.7	3
409	Epigeneticmechanisms in drug addiction and depression. , 2012, , 79-89.		2
410	Constance E. Lieber, Theodore R. Stanley, and the Enduring Impact of Philanthropy on Psychiatry Research. Biological Psychiatry, 2016, 80, 84-86.	0.7	2
411	Personal reflections on a mentor extraordinaire: Paul Greengard, Ph.D. (1925–2019). Neuropsychopharmacology, 2019, 44, 1837-1838.	2.8	2
412	Paul Greengard (1925–2019). Cell, 2019, 177, 1365-1366.	13.5	2
413	Reply to: Multiple Comparisons and Inappropriate Statistical Testing Lead to Spurious Sex Differences in Gene Expression. Biological Psychiatry, 2022, 91, e3-e5.	0.7	2
414	Introduction to Special Issue: Insight Into Sex Differences in Neuropsychiatric Syndromes From Transcriptomic Analyses. Biological Psychiatry, 2022, 91, 3-5.	0.7	2

#	Article	IF	CITATIONS
415	Drug Addiction and Reward. , 2013, , 173-195.		1
416	Neurodegenerative Dementias: Connecting Psychiatry and Neurology Through a Shared Neurobiology. Biological Psychiatry, 2014, 75, 518-519.	0.7	1
417	Biological Psychiatry and Biological Psychiatry: Cognitive Neuroscience and Neuroimaging Adopt Neuroscience-Based Nomenclature. Biological Psychiatry, 2016, 80, 2-3.	0.7	1
418	Biological Psychiatry and Biological Psychiatry: Cognitive Neuroscience and Neuroimaging Adopt Neuroscience-Based Nomenclature. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2016, 1, 300-301.	1.1	1
419	Molecular characterization of the resilient brain. , 2020, , 209-231.		1
420	Chronic intermittent hypoxia enhances tau seeding and propagation and exacerbates Alzheimer'sâ€like memory and synaptic plasticity deficits and molecular signatures. Alzheimer's and Dementia, 2020, 16, e045408.	0.4	1
421	Ronald S. Duman, Ph.D. (1954–2020). Neuropsychopharmacology, 2020, 45, 1078-1078.	2.8	1
422	Regionâ€specific induction of ΔFosB by repeated administration of typical versus atypical antipsychotic drugs. Synapse, 1999, 33, 118-128.	0.6	1
423	Epigenetic Mechanisms of Drug Addiction. Research and Perspectives in Neurosciences, 2012, , 145-160.	0.4	1
424	Inducible Genetic Tools for CNS Drug Discovery. CNS Neuroscience & Therapeutics, 1999, 5, 17-17.	4.0	0
425	Planning the New National Institute on Substance Use and Addiction Disorders. Biological Psychiatry, 2012, 72, 166-167.	0.7	0
426	Neuroepigenomics and Human Disease. , 2016, , 73-91.		0
427	Ronald S. Duman (1954–2020): In Memoriam. Biological Psychiatry, 2021, 90, 72-73.	0.7	Ο
428	RGS9â€ 2 differentially regulates adenylyl cyclase signaling by opioid and cannabinoid receptors in the mouse CNS. FASEB Journal, 2008, 22, 712.10.	0.2	0
429	CREB regulation of the CART gene in the rat nucleus accumbens and GH3 cultured cells. FASEB Journal, 2010, 24, 578.1.	0.2	Ο
430	Repeated cannabinoid administration induces ΔFosB and sensitizes mu opioid receptor activity in the nucleus accumbens. FASEB Journal, 2013, 27, 1096.6.	0.2	0
431	î"FosB. , 2016, , 1-8.		0
432	Bioinformatic Analysis for Profiling Drug-induced Chromatin Modification Landscapes in Mouse Brain Using ChlP-seq Data. Bio-protocol, 2017, 7, .	0.2	0

#	Article	IF	CITATIONS
433	ΔFosB. , 2018, , 44-51.		0
434	Oxycodoneâ€induced gene expression adaptations in the brain reward center in a murine model of neuropathic pain. FASEB Journal, 2019, 33, 808.19.	0.2	0
435	A novel HDAC1/2 inhibitor alleviates physical and emotional symptoms associated with spontaneous oxycodone withdrawal in neuropathic pain mice. FASEB Journal, 2022, 36, .	0.2	Ο