

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6178361/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pretreatment of straw using filamentous fungi improves the remediation effect of straw biochar on bivalent cadmium contaminated soil. Environmental Science and Pollution Research, 2022, 29, 60933-60944.	5.3	4
2	Adsorption of tetracycline and Cd(II) on polystyrene and polyethylene terephthalate microplastics with ultraviolet and hydrogen peroxide aging treatment. Science of the Total Environment, 2022, 845, 157109.	8.0	18
3	Removal of Di-n-butyl phthalate from aged leachate under optimal hydraulic condition of leachate treatment process and in the presence of its dominant bacterial strains. Ecotoxicology and Environmental Safety, 2021, 222, 112532.	6.0	6
4	Transformation of phthalic acid diesters in an anaerobic/anoxic/oxic leachate treatment process. Chinese Journal of Chemical Engineering, 2020, 28, 249-253.	3.5	5
5	Effective degradation of Di-n-butyl phthalate by reusable, magnetic Fe3O4 nanoparticle-immobilized Pseudomonas sp. W1 and its application in simulation. Chemosphere, 2020, 250, 126339.	8.2	17
6	Effects of di-n-butyl phthalate and di-2-ethylhexyl phthalate on pollutant removal and microbial community during wastewater treatment. Ecotoxicology and Environmental Safety, 2020, 198, 110665.	6.0	24
7	The overexpression of one single cbh gene making Trichoderma asperellum T-1 a better cellulase producer. Annals of Microbiology, 2019, 69, 673-683.	2.6	1
8	Agro-industrial waste recycling by Trichosporon fermentans: conversion of waste sweetpotato vines alone into lipid. Environmental Science and Pollution Research, 2018, 25, 8793-8799.	5.3	9
9	Sorption of tetracycline on biochar derived from rice straw and swine manure. RSC Advances, 2018, 8, 16260-16268.	3.6	97
10	The contrasting effects of N-(n-butyl) thiophosphoric triamide (NBPT) on N2O emissions in arable soils differing in pH are underlain by complex microbial mechanisms. Science of the Total Environment, 2018, 642, 155-167.	8.0	40
11	Excellent waste biomass-degrading performance of Trichoderma asperellum T-1 during submerged fermentation. Science of the Total Environment, 2017, 609, 1329-1339.	8.0	21
12	Application of methanol and sweet potato vine hydrolysate as enhancers of citric acid production by Aspergillus niger. Bioresources and Bioprocessing, 2017, 4, 35.	4.2	11
13	The binding, synergistic and structural characteristics of BsEXLX1 for loosening the main components of lignocellulose: Lignin, xylan, and cellulose. Enzyme and Microbial Technology, 2016, 92, 67-75.	3.2	6
14	Comparative genome analysis of the oleaginous yeast Trichosporon fermentans reveals its potential applications in lipid accumulation. Microbiological Research, 2016, 192, 203-210.	5.3	15
15	Agrobacterium tumefaciens-mediated transformation of Botryosphaeria dothidea. World Journal of Microbiology and Biotechnology, 2016, 32, 106.	3.6	10
16	Characterization of Cellulase Secretion and Cre1-Mediated Carbon Source Repression in the Potential Lignocellulose-Degrading Strain Trichoderma asperellum T-1. PLoS ONE, 2015, 10, e0119237.	2.5	10
17	Sweetpotato vines hydrolysate promotes single cell oils production of Trichosporon fermentans in high-density molasses fermentation. Bioresource Technology, 2015, 176, 249-256.	9.6	26
18	Engineering Aspergillus oryzae A-4 through the Chromosomal Insertion of Foreign Cellulase Expression Cassette to Improve Conversion of Cellulosic Biomass into Lipids. PLoS ONE, 2014, 9, e108442.	2.5	6

Qun Wang

#	Article	IF	CITATIONS
19	Sweetpotato vines hydrolysate induces glycerol to be an effective substrate for lipid production of Trichosporon fermentans. Bioresource Technology, 2013, 136, 725-729.	9.6	20
20	Mechanism for the disparity of the lipid production by Trichosporon fermentans grown on different sweetpotato vines hydrolysates. Industrial Crops and Products, 2013, 50, 844-851.	5.2	4
21	Evaluation of Bacterial Expansin EXLX1 as a Cellulase Synergist for the Saccharification of Lignocellulosic Agro-Industrial Wastes. PLoS ONE, 2013, 8, e75022.	2.5	25
22	Sequence analysis of leader and trailer regions of rice yellow stunt rhabdovirus and characterization of theirin vivo transcripts. Science in China Series C: Life Sciences, 1999, 42, 50-56.	1.3	11