Qun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6178361/publications.pdf

Version: 2024-02-01

840776 752698 22 386 11 20 h-index citations g-index papers 22 22 22 514 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Sorption of tetracycline on biochar derived from rice straw and swine manure. RSC Advances, 2018, 8, 16260-16268.	3.6	97
2	The contrasting effects of N-(n-butyl) thiophosphoric triamide (NBPT) on N2O emissions in arable soils differing in pH are underlain by complex microbial mechanisms. Science of the Total Environment, 2018, 642, 155-167.	8.0	40
3	Sweetpotato vines hydrolysate promotes single cell oils production of Trichosporon fermentans in high-density molasses fermentation. Bioresource Technology, 2015, 176, 249-256.	9.6	26
4	Evaluation of Bacterial Expansin EXLX1 as a Cellulase Synergist for the Saccharification of Lignocellulosic Agro-Industrial Wastes. PLoS ONE, 2013, 8, e75022.	2.5	25
5	Effects of di-n-butyl phthalate and di-2-ethylhexyl phthalate on pollutant removal and microbial community during wastewater treatment. Ecotoxicology and Environmental Safety, 2020, 198, 110665.	6.0	24
6	Excellent waste biomass-degrading performance of Trichoderma asperellum T-1 during submerged fermentation. Science of the Total Environment, 2017, 609, 1329-1339.	8.0	21
7	Sweetpotato vines hydrolysate induces glycerol to be an effective substrate for lipid production of Trichosporon fermentans. Bioresource Technology, 2013, 136, 725-729.	9.6	20
8	Adsorption of tetracycline and Cd(II) on polystyrene and polyethylene terephthalate microplastics with ultraviolet and hydrogen peroxide aging treatment. Science of the Total Environment, 2022, 845, 157109.	8.0	18
9	Effective degradation of Di-n-butyl phthalate by reusable, magnetic Fe3O4 nanoparticle-immobilized Pseudomonas sp. W1 and its application in simulation. Chemosphere, 2020, 250, 126339.	8.2	17
10	Comparative genome analysis of the oleaginous yeast Trichosporon fermentans reveals its potential applications in lipid accumulation. Microbiological Research, 2016, 192, 203-210.	5.3	15
11	Sequence analysis of leader and trailer regions of rice yellow stunt rhabdovirus and characterization of theirin vivo transcripts. Science in China Series C: Life Sciences, 1999, 42, 50-56.	1.3	11
12	Application of methanol and sweet potato vine hydrolysate as enhancers of citric acid production by Aspergillus niger. Bioresources and Bioprocessing, 2017, 4, 35.	4.2	11
13	Characterization of Cellulase Secretion and Cre1-Mediated Carbon Source Repression in the Potential Lignocellulose-Degrading Strain Trichoderma asperellum T-1. PLoS ONE, 2015, 10, e0119237.	2.5	10
14	Agrobacterium tumefaciens-mediated transformation of Botryosphaeria dothidea. World Journal of Microbiology and Biotechnology, 2016, 32, 106.	3.6	10
15	Agro-industrial waste recycling by Trichosporon fermentans: conversion of waste sweetpotato vines alone into lipid. Environmental Science and Pollution Research, 2018, 25, 8793-8799.	5.3	9
16	The binding, synergistic and structural characteristics of BsEXLX1 for loosening the main components of lignocellulose: Lignin, xylan, and cellulose. Enzyme and Microbial Technology, 2016, 92, 67-75.	3.2	6
17	Removal of Di-n-butyl phthalate from aged leachate under optimal hydraulic condition of leachate treatment process and in the presence of its dominant bacterial strains. Ecotoxicology and Environmental Safety, 2021, 222, 112532.	6.0	6
18	Engineering Aspergillus oryzae A-4 through the Chromosomal Insertion of Foreign Cellulase Expression Cassette to Improve Conversion of Cellulosic Biomass into Lipids. PLoS ONE, 2014, 9, e108442.	2.5	6

#	Article	IF	CITATION
19	Transformation of phthalic acid diesters in an anaerobic/anoxic/oxic leachate treatment process. Chinese Journal of Chemical Engineering, 2020, 28, 249-253.	3.5	5
20	Mechanism for the disparity of the lipid production by Trichosporon fermentans grown on different sweetpotato vines hydrolysates. Industrial Crops and Products, 2013, 50, 844-851.	5.2	4
21	Pretreatment of straw using filamentous fungi improves the remediation effect of straw biochar on bivalent cadmium contaminated soil. Environmental Science and Pollution Research, 2022, 29, 60933-60944.	5 . 3	4
22	The overexpression of one single cbh gene making Trichoderma asperellum T-1 a better cellulase producer. Annals of Microbiology, 2019, 69, 673-683.	2.6	1