Joerg Neugebauer

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6177612/joerg-neugebauer-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

441 31,009 80 165 g-index

465 34,197 4.7 7.48 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
441	Origins of the hydrogen signal in atom probe tomography: case studies of alkali and noble metals. <i>New Journal of Physics</i> , 2022 , 24, 013008	2.9	2
440	Ab initio investigations of point and complex defect structures in B2-FeAl. <i>Physical Review Materials</i> , 2022 , 6,	3.2	1
439	Controlled doping of electrocatalysts through engineering impurities Advanced Materials, 2022, e220.	3 03 0	2
438	Finite-size correction for slab supercell calculations of materials with spontaneous polarization. <i>Npj Computational Materials</i> , 2021 , 7,	10.9	2
437	A Combined Experimental and First-Principles Based Assessment of Finite-Temperature Thermodynamic Properties of Intermetallic AlSc. <i>Materials</i> , 2021 , 14,	3.5	1
436	Dielectric Properties of Nanoconfined Water: A Canonical Thermopotentiostat Approach. <i>Physical Review Letters</i> , 2021 , 126, 136803	7.4	15
435	Impact of Water Coadsorption on the Electrode Potential of H-Pt(1 1 1)-Liquid Water Interfaces. <i>Physical Review Letters</i> , 2021 , 126, 166802	7.4	11
434	B2 ordering in body-centered-cubic AlNbTiV refractory high-entropy alloys. <i>Physical Review Materials</i> , 2021 , 5,	3.2	5
433	Chemically induced local lattice distortions versus structural phase transformations in compositionally complex alloys. <i>Npj Computational Materials</i> , 2021 , 7,	10.9	6
432	A fully automated approach to calculate the melting temperature of elemental crystals. <i>Computational Materials Science</i> , 2021 , 187, 110065	3.2	4
431	Finite-temperature interplay of structural stability, chemical complexity, and elastic properties of bcc multicomponent alloys from ab initio trained machine-learning potentials. <i>Physical Review Materials</i> , 2021 , 5,	3.2	2
430	Segmentation of Static and Dynamic Atomic-Resolution Microscopy Data Sets with Unsupervised Machine Learning Using Local Symmetry Descriptors. <i>Microscopy and Microanalysis</i> , 2021 , 1-11	0.5	0
429	Revealing atomic-scale vacancy-solute interaction in nickel. <i>Scripta Materialia</i> , 2021 , 203, 114036	5.6	1
428	Mechanism of collective interstitial ordering in Fe-C alloys. <i>Nature Materials</i> , 2020 , 19, 849-854	27	11
427	Interplay of Chemistry and Faceting at Grain Boundaries in a Model Al Alloy. <i>Physical Review Letters</i> , 2020 , 124, 106102	7.4	15
426	Phonons in magnetically disordered materials: Magnetic versus phononic time scales. <i>Physical Review B</i> , 2020 , 101,	3.3	5
425	Generalized dipole correction for charged surfaces in the repeated-slab approach. <i>Physical Review B</i> , 2020 , 102,	3.3	6

424	Impact of magnetism on the phase stability of rare-earth based hard magnetic materials. <i>Calphad: Computer Coupling of Phase Diagrams and Thermochemistry</i> , 2020 , 68, 101731	1.9	2	
423	Ablinitio Description of Bond Breaking in Large Electric Fields. <i>Physical Review Letters</i> , 2020 , 124, 17680) †.4	16	
422	Performance of the standard exchange-correlation functionals in predicting melting properties fully from first principles: Application to Al and magnetic Ni. <i>Physical Review B</i> , 2020 , 101,	3.3	7	
421	Correlation analysis of strongly fluctuating atomic volumes, charges, and stresses in body-centered cubic refractory high-entropy alloys. <i>Physical Review Materials</i> , 2020 , 4,	3.2	14	
420	Role of magnetic ordering for the design of quinary TWIP-TRIP high entropy alloys. <i>Physical Review Materials</i> , 2020 , 4,	3.2	11	
419	Short-range order in face-centered cubic VCoNi alloys. <i>Physical Review Materials</i> , 2020 , 4,	3.2	8	
418	Atomic scale configuration of planar defects in the Nb-rich C14 Laves phase NbFe2. <i>Acta Materialia</i> , 2020 , 183, 362-376	8.4	16	
417	Atomic relaxation around defects in magnetically disordered materials computed by atomic spin constraints within an efficient Lagrange formalism. <i>Physical Review B</i> , 2020 , 102,	3.3	3	
416	Anharmonic free energy of lattice vibrations in fcc crystals from a mean-field bond. <i>Physical Review B</i> , 2020 , 102,	3.3	1	
415	Segregation-assisted spinodal and transient spinodal phase separation at grain boundaries. <i>Npj Computational Materials</i> , 2020 , 6,	10.9	11	
414	Ab initio based method to study structural phase transitions in dynamically unstable crystals, with new insights on the Ito Itransformation in titanium. <i>Physical Review B</i> , 2019 , 100,	3.3	9	
413	Deciphering Charge Transfer and Electronic Polarization Effects at Gold Nanocatalysts on Reduced Titania Support. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 5495-5506	3.8	5	
412	Invar effects in FeNiCo medium entropy alloys: From an Invar treasure map to alloy design. <i>Intermetallics</i> , 2019 , 111, 106520	3.5	17	
411	Impact of lattice relaxations on phase transitions in a high-entropy alloy studied by machine-learning potentials. <i>Npj Computational Materials</i> , 2019 , 5,	10.9	60	
410	Role of hole confinement in the recombination properties of InGaN quantum structures. <i>Scientific Reports</i> , 2019 , 9, 9047	4.9	6	
409	Elasticity of Phases in Fe-Al-Ti Superalloys: Impact of Atomic Order and Anti-Phase Boundaries. <i>Crystals</i> , 2019 , 9, 299	2.3	8	
408	pyiron: An integrated development environment for computational materials science. <i>Computational Materials Science</i> , 2019 , 163, 24-36	3.2	24	
407	Thermodynamics of grain boundary segregation, interfacial spinodal and their relevance for nucleation during solid-solid phase transitions. <i>Acta Materialia</i> , 2019 , 168, 109-120	8.4	38	

406	The Basics of Electronic Structure Theory for Periodic Systems. Frontiers in Chemistry, 2019, 7, 106	5	29
405	Ab initio vibrational free energies including anharmonicity for multicomponent alloys. <i>Npj Computational Materials</i> , 2019 , 5,	10.9	44
404	Ab initio phase stabilities of Ce-based hard magnetic materials and comparison with experimental phase diagrams. <i>Physical Review Materials</i> , 2019 , 3,	3.2	9
403	Impact of interstitial C on phase stability and stacking-fault energy of the CrMnFeCoNi high-entropy alloy. <i>Physical Review Materials</i> , 2019 , 3,	3.2	21
402	Imaging individual solute atoms at crystalline imperfections in metals. <i>New Journal of Physics</i> , 2019 , 21, 123020	2.9	18
401	Phonon Lifetimes throughout the Brillouin Zone at Elevated Temperatures from Experiment and Ab[Initio. <i>Physical Review Letters</i> , 2019 , 123, 235501	7.4	10
400	Ultrastrong Medium-Entropy Single-Phase Alloys Designed via Severe Lattice Distortion. <i>Advanced Materials</i> , 2019 , 31, e1807142	24	132
399	Transferability of interatomic potentials for molybdenum and silicon. <i>Modelling and Simulation in Materials Science and Engineering</i> , 2019 , 27, 025007	2	11
398	Discovery of Elusive K4O6, a Compound Stabilized by Configurational Entropy of Polarons. <i>Angewandte Chemie</i> , 2019 , 131, 155-159	3.6	O
397	Discovery of Elusive K O , a Compound Stabilized by Configurational Entropy of Polarons. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 149-153	16.4	4
396	Impact of local electrostatic field rearrangement on field ionization. <i>Journal Physics D: Applied Physics</i> , 2018 , 51, 105601	3	15
395			
	Selective Solvent-Induced Stabilization of Polar Oxide Surfaces in an Electrochemical Environment. <i>Physical Review Letters</i> , 2018 , 120, 066101	7.4	17
394		7.4	17 31
	Physical Review Letters, 2018, 120, 066101 Calculating free energies of point defects from ab initio. Computational Materials Science, 2018,		
394	Physical Review Letters, 2018, 120, 066101 Calculating free energies of point defects from ab initio. Computational Materials Science, 2018, 148, 249-259 Temperature-dependent phonon spectra of magnetic random solid solutions. Npj Computational	3.2	31
394	Physical Review Letters, 2018, 120, 066101 Calculating free energies of point defects from ab initio. Computational Materials Science, 2018, 148, 249-259 Temperature-dependent phonon spectra of magnetic random solid solutions. Npj Computational Materials, 2018, 4, Ab initio simulation of hydrogen-induced decohesion in cementite-containing microstructures. Acta	3.2	31
394 393 392	Calculating free energies of point defects from ab initio. Computational Materials Science, 2018, 148, 249-259 Temperature-dependent phonon spectra of magnetic random solid solutions. Npj Computational Materials, 2018, 4, Ab initio simulation of hydrogen-induced decohesion in cementite-containing microstructures. Acta Materialia, 2018, 150, 53-58	3.2 10.9 8.4	31 13 27

(2018-2018)

Modeling of Phase Equilibria in Ni-H: Bridging the Atomistic with the Continuum Scale. <i>Metals</i> , 2018 , 8, 280	2.3	2	
First-Principles Approach to Model Electrochemical Reactions: Understanding the Fundamental Mechanisms behind Mg Corrosion. <i>Physical Review Letters</i> , 2018 , 120, 246801	7.4	45	
The prognostic relevance of lymph node ratio in patients with oral squamous cell carcinoma treated with neoadjuvant therapy regimen and radical surgery. <i>Journal of Cranio-Maxillo-Facial Surgery</i> , 2018 , 46, 1659-1663	3.6	4	
Elastically frustrated rehybridization: Origin of chemical order and compositional limits in InGaN quantum wells. <i>Physical Review Materials</i> , 2018 , 2,	3.2	26	
Tetragonal fcc-Fe induced by Etarbide precipitates: Atomic scale insights from correlative electron microscopy, atom probe tomography, and density functional theory. <i>Physical Review Materials</i> , 2018 , 2,	3.2	13	
Impact of asymmetric martensite and austenite nucleation and growth behavior on the phase stability and hysteresis of freestanding shape-memory nanoparticles. <i>Physical Review Materials</i> , 2018 , 2,	3.2	9	
Migration mechanisms of a faceted grain boundary. Physical Review Materials, 2018, 2,	3.2	12	
Precipitate-induced nonlinearities of diffusion along grain boundaries in Al-based alloys. <i>Physical Review Materials</i> , 2018 , 2,	3.2	7	
{110} planar faults in strained bcc metals: Origins and implications of a commonly observed artifact of classical potentials. <i>Physical Review Materials</i> , 2018 , 2,	3.2	10	
GBIzode: A grain boundary generation code. Journal of Open Source Software, 2018, 3, 900	5.2	5	
Impact of Co and Fe Doping on the Martensitic Transformation and the Magnetic Properties in Ni-Mn-Based Heusler Alloys. <i>Physica Status Solidi (B): Basic Research</i> , 2018 , 255, 1700455	1.3	12	
Titelbild: Discovery of Elusive K4O6, a Compound Stabilized by Configurational Entropy of Polarons (Angew. Chem. 1/2019). <i>Angewandte Chemie</i> , 2018 , 131, 1	3.6		
Atomistic modelling of light-element co-segregation at structural defects in iron. <i>Procedia Structural Integrity</i> , 2018 , 13, 1099-1104	1	2	
A machine learning approach to model solute grain boundary segregation. <i>Npj Computational Materials</i> , 2018 , 4,	10.9	58	
Origin of the Low Magnetic Moment in FeAlTi: An Ab Initio Study. <i>Materials</i> , 2018 , 11,	3.5	14	
Temperature dependence of the stacking-fault Gibbs energy for Al, Cu, and Ni. <i>Physical Review B</i> , 2018 , 98,	3.3	33	
Anomalous Phonon Lifetime Shortening in Paramagnetic CrN Caused by Spin-Lattice Coupling: A Combined Spin and Ablinitio Molecular Dynamics Study. <i>Physical Review Letters</i> , 2018 , 121, 125902	7.4	25	
Impact of Chemical Fluctuations on Stacking Fault Energies of CrCoNi and CrMnFeCoNi High Entropy Alloys from First Principles. <i>Entropy</i> , 2018 , 20,	2.8	42	
	First-Principles Approach to Model Electrochemical Reactions: Understanding the Fundamental Mechanisms behind Mg Corrosion. <i>Physical Review Letters</i> , 2018, 120, 246801 The prognostic relevance of lymph node ratio in patients with oral squamous cell carcinoma treated with neoadjuvant therapy regimen and radical surgery. <i>Journal of Cranio-Maxillo-Facial Surgery</i> , 2018, 46, 1659-1663 Elastically frustrated rehybridization: Origin of chemical order and compositional limits in InGaN quantum wells. <i>Physical Review Materials</i> , 2018, 2, Tetragonal fcc-Fe induced by £arbide precipitates: Atomic scale insights from correlative electron microscopy, atom probe tomography, and density functional theory. <i>Physical Review Materials</i> , 2018, 2, Impact of asymmetric martensite and austenite nucleation and growth behavior on the phase stability and hysteresis of freestanding shape-memory nanoparticles. <i>Physical Review Materials</i> , 2018, 2, Migration mechanisms of a faceted grain boundary. <i>Physical Review Materials</i> , 2018, 2, Precipitate-induced nonlinearities of diffusion along grain boundaries in Al-based alloys. <i>Physical Review Materials</i> , 2018, 2, {110} planar faults in strained bcc metals: Origins and implications of a commonly observed artifact of classical potentials. <i>Physical Review Materials</i> , 2018, 2, GBizode: A grain boundary generation code. <i>Journal of Open Source Software</i> , 2018, 3, 900 Impact of Co and Fe Doping on the Martensitic Transformation and the Magnetic Properties in Ni-Mn-Based Heusler Alloys. <i>Physica Status Solidi (B): Basic Research</i> , 2018, 255, 1700455 Titelbid: Discovery of Elusive K406, a Compound Stabilized by Configurational Entropy of Polarons (Angew. Chem. 1/2019). <i>Angewandte Chemie</i> , 2018, 131, 1 Atomistic modelling of light-element co-segregation at structural defects in iron. <i>Procedia Structural Integrity</i> , 2018, 13, 1099-1104 A machine learning approach to model solute grain boundary segregation. <i>Npj Computational Materials</i> , 2018, 4, Origin of the Low Magnetic Moment in	First-Principles Approach to Model Electrochemical Reactions: Understanding the Fundamental Mechanisms behind Mg Corrosion. <i>Physical Review Letters</i> , 2018, 120, 246801 The prognostic relevance of lymph node ratio in patients with oral squamous cell carcinoma treated with neoadjuvant therapy regimen and radical surgery. <i>Journal of Cranio-Maxillo-Facial Surgery</i> , 2018, 46, 1659-1663 Elastically frustrated rehybridization: Origin of chemical order and compositional limits in InGaN quantum wells. <i>Physical Review Materials</i> , 2018, 2, Tetragonal fcc-Fe induced by Barbide precipitates: Atomic scale insights from correlative electron microscopy, atom probe tomography, and density functional theory. <i>Physical Review Materials</i> , 2018, 2, Impact of asymmetric martensite and austenite nucleation and growth behavior on the phase stability and hysteresis of freestanding shape-memory nanoparticles. <i>Physical Review Materials</i> , 2018, 2, Migration mechanisms of a faceted grain boundary. <i>Physical Review Materials</i> , 2018, 2, Precipitate-induced nonlinearities of dilffusion along grain boundaries in Al-based alloys. <i>Physical Review Materials</i> , 2018, 2, 2018, 2, GBiZode: A grain boundary generation code. <i>Journal of Open Source Software</i> , 2018, 3, 900 52 Impact of Co and Fe Doping on the Martensitic Transformation and the Magnetic Properties in Ni-Mn-Based Heusler Alloys. <i>Physica Status Solidi</i> (B): Basic Research, 2018, 255, 1700455 13 Titelbild: Discovery of Elusive K4O6, a Compound Stabilized by Configurational Entropy of Polarons (Angew. Chem. 1/2019). <i>Angewandte Chemie</i> , 2018, 131, 1 Atomistic modelling of light-element co-segregation at structural defects in iron. <i>Procedia Structural Integrity</i> , 2018, 13, 1099-1104 A machine learning approach to model solute grain boundary segregation. <i>Naj Computational Materials</i> , 2018, 14, Origin of the Low Magnetic Moment in FeBIT: An Ab Initio Study. <i>Materials</i> , 2018, 11, 25 Temperature dependence of the stacking-fault Gibbs energy for Al, Cu, and Ni. <i>Physical </i>	First-Principles Approach to Model Electrochemical Reactions: Understanding the Fundamental Mechanisms behind Mg Corrosion. Physical Review Letters, 2018, 120, 246801 The prognostic relevance of lymph node ratio in patients with oral squamous cell carcinoma treated with neoadjuvant therapy regimen and radical surgery. Journal of Cranio-Maxillo-Facial 3,6 Elastically frustrated rehybridization: Origin of chemical order and compositional limits in InGaN guantum wells. Physical Review Materials, 2018, 2, Tetragonal fcc-Fe induced by Earbide precipitates: Atomic scale insights from correlative electron microscopy, atom probe tomography, and density functional theory. Physical Review Materials, 2018, 2, Impact of asymmetric martensite and austenite nucleation and growth behavior on the phase stability and hysteresis of freestanding shape-memory nanoparticles. Physical Review Materials, 2018, 2, Migration mechanisms of a faceted grain boundary. Physical Review Materials, 2018, 2, Precipitate-induced nonlinearities of diffusion along grain boundaries in Al-based alloys. Physical Review Materials, 2018, 2, [110] planar faults in strained bcc metals: Origins and implications of a commonly observed artifact of classical potentials. Physical Review Materials, 2018, 2, [110] planar faults in strained bcc metals: Origins and implications of a commonly observed artifact of classical potentials. Physical Review Materials, 2018, 2, [110] planar Faults in strained bcc metals: Origins and implications of a commonly observed artifact of classical potentials. Physical Review Materials, 2018, 2, [110] Planar Faults in strained bcc metals: Origins and stabilized by Configurational Entropy of Polarons (Angew. Chem. 1/2019). Angewandre Chemic, 2018, 131, 1 Atomistic modelling of light-element co-segregation at structural defects in iron. Procedia Structural Integrity, 2018, 13, 1099-1104 A machine learning approach to model solute grain boundary segregation. Npj Computational Materials, 2018, 4, Origin of the Low Magnetic

370	First-principles calculations for charged defects at surfaces, interfaces, and two-dimensional materials in the presence of electric fields. <i>Physical Review B</i> , 2018 , 97,	3.3	43
369	Modelling of grain boundary dynamics using amplitude equations. <i>Continuum Mechanics and Thermodynamics</i> , 2017 , 29, 895-911	3.5	6
368	Fermi-level pinning and intrinsic surface states of Al1IIInxN(101II) surfaces. <i>Applied Physics Letters</i> , 2017 , 110, 022104	3.4	4
367	Atomistic Modeling-Based Design of Novel Materials . <i>Advanced Engineering Materials</i> , 2017 , 19, 16006	88 .5	10
366	Atomic structures of twin boundaries in hexagonal close-packed metallic crystals with particular focus on Mg. <i>Npj Computational Materials</i> , 2017 , 3,	10.9	26
365	Ab initio modelling of solute segregation energies to a general grain boundary. <i>Acta Materialia</i> , 2017 , 132, 138-148	8.4	21
364	Hydrogen behaviour at twist {110} grain boundaries in -Fe. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences,</i> 2017 , 375,	3	11
363	Narrow Implants 2017 , 208-218		
362	100 years publicprivate partnership in metallurgical and materials science research. <i>Materials Today</i> , 2017 , 20, 335-337	21.8	
361	Ab initio explanation of disorder and off-stoichiometry in Fe-Mn-Al-C (tarbides. <i>Physical Review B</i> , 2017 , 95,	3.3	24
360	Low-temperature features in the heat capacity of unary metals and intermetallics for the example of bulk aluminum and Al3Sc. <i>Physical Review B</i> , 2017 , 95,	3.3	7
359	Operando Phonon Studies of the Protonation Mechanism in Highly Active Hydrogen Evolution Reaction Pentlandite Catalysts. <i>Journal of the American Chemical Society</i> , 2017 , 139, 14360-14363	16.4	42
358	High Fidelity Reconstruction of Experimental Field Ion Microscopy Data by Atomic Relaxation Simulations. <i>Microscopy and Microanalysis</i> , 2017 , 23, 642-643	0.5	5
357	A rare-earth free magnesium alloy with improved intrinsic ductility. <i>Scientific Reports</i> , 2017 , 7, 10458	4.9	95
356	Accurate electronic free energies of the 3d,4d, and 5d transition metals at high temperatures. <i>Physical Review B</i> , 2017 , 95,	3.3	46
355	Magnetic properties of the CrMnFeCoNi high-entropy alloy. <i>Physical Review B</i> , 2017 , 96,	3.3	74
354	Efficient approach to compute melting properties fully from ab initio with application to Cu. <i>Physical Review B</i> , 2017 , 96,	3.3	37
353	Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity. <i>Acta Materialia</i> , 2017 , 136, 262-270	8.4	179

(2016-2017)

352	Adsorption and desorption of hydrogen at nonpolar GaN(11[00) surfaces: Kinetics and impact on surface vibrational and electronic properties. <i>Physical Review B</i> , 2017 , 95,	3.3	12
351	Origin of Structural Modulations in Ultrathin Fe Films on Cu(001). <i>Physical Review Letters</i> , 2017 , 118, 236101	7.4	4
350	Confined chemical and structural states at dislocations in Fe-9wt%Mn steels: A correlative TEM-atom probe study combined with multiscale modelling. <i>Acta Materialia</i> , 2017 , 124, 305-315	8.4	60
349	Atomic scale processes of phase transformations in nanocrystalline NiTi shape-memory alloys. <i>Acta Materialia</i> , 2017 , 123, 90-101	8.4	104
348	The Role of Carbides as Hydrogen Traps in High-Mn Steels. <i>Metals</i> , 2017 , 7, 264	2.3	16
347	Thermomechanical response of NiTi shape-memory nanoprecipitates in TiV alloys. <i>Physical Review Materials</i> , 2017 , 1,	3.2	18
346	Influence of magnetic excitations on the phase stability of metals and steels. <i>Current Opinion in Solid State and Materials Science</i> , 2016 , 20, 77-84	12	21
345	Partitioning of Cr and Si between cementite and ferrite derived from first-principles thermodynamics. <i>Acta Materialia</i> , 2016 , 102, 241-250	8.4	15
344	Interplay between interstitial displacement and displacive lattice transformations. <i>Physical Review B</i> , 2016 , 94,	3.3	10
343	The impact of carbon and oxygen in alpha-titanium: ab initio study of solution enthalpies and grain boundary segregation. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 385001	1.8	9
342	Nonlinear elastic effects in phase field crystal and amplitude equations: Comparison to ab initio simulations of bcc metals and graphene. <i>Physical Review B</i> , 2016 , 93,	3.3	14
341	Ablīnitio Prediction of Martensitic and Intermartensitic Phase Boundaries in Ni-Mn-Ga. <i>Physical Review Letters</i> , 2016 , 116, 025503	7.4	44
340	Deformation-Induced Martensite: A New Paradigm for Exceptional Steels. <i>Advanced Materials</i> , 2016 , 28, 7753-7	24	48
339	Electron and chemical reservoir corrections for point-defect formation energies. <i>Physical Review B</i> , 2016 , 93,	3.3	42
338	First-principles investigation of hydrogen interaction with TiC precipitates in \oplus e. <i>Physical Review B</i> , 2016 , 93,	3.3	75
337	Impact of local magnetism on stacking fault energies: A first-principles investigation for fcc iron. <i>Physical Review B</i> , 2016 , 93,	3.3	27
336	Strong impact of lattice vibrations on electronic and magnetic properties of paramagnetic Fe revealed by disordered local moments molecular dynamics. <i>Physical Review B</i> , 2016 , 93,	3.3	31
335	Scale bridging description of coherent phase equilibria in the presence of surfaces and interfaces. <i>Physical Review B</i> , 2016 , 94,	3.3	7

334	Atomistic migration mechanisms of atomically flat, stepped, and kinked grain boundaries. <i>Physical Review B</i> , 2016 , 94,	3.3	23
333	Combined atom probe tomography and density functional theory investigation of the Al off-stoichiometry of Ecarbides in an austenitic FeMnAlC low density steel. <i>Acta Materialia</i> , 2016 , 106, 229-238	8.4	73
332	Quaternary Al-Cu-Mg-Si Q Phase: Sample Preparation, Heat Capacity Measurement and First-Principles Calculations. <i>Journal of Phase Equilibria and Diffusion</i> , 2016 , 37, 119-126	1	9
331	The structure and dynamics of chitin nanofibrils in an aqueous environment revealed by molecular dynamics simulations. <i>RSC Advances</i> , 2016 , 6, 30710-30721	3.7	16
330	Multiscale modeling of hydrogen enhanced homogeneous dislocation nucleation. <i>Acta Materialia</i> , 2016 , 107, 144-151	8.4	18
329	Impact of magnetic fluctuations on lattice excitations in fcc nickel. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 076002	1.8	13
328	Ab Initio Determined Phase Diagram of Clean and Solvated Muscovite Mica Surfaces. <i>Langmuir</i> , 2016 , 32, 1027-33	4	4
327	First-principles calculation of the elastic dipole tensor of a point defect: Application to hydrogen in Exirconium. <i>Physical Review B</i> , 2016 , 94,	3.3	19
326	From electronic structure to phase diagrams: A bottom-up approach to understand the stability of titanium Transition metal alloys. <i>Acta Materialia</i> , 2016 , 113, 311-319	8.4	51
325	A QM/MM approach for low-symmetry defects in metals. <i>Computational Materials Science</i> , 2016 , 118, 259-268	3.2	6
324	Changes in volume during the four months' remodelling period of iliac crest grafts in reconstruction of the alveolar ridge. <i>British Journal of Oral and Maxillofacial Surgery</i> , 2016 , 54, 751-6	1.4	13
323	Ab initio-guided design of twinning-induced plasticity steels. MRS Bulletin, 2016, 41, 320-325	3.2	21
322	Multiscale description of carbon-supersaturated ferrite in severely drawn pearlitic wires. <i>Acta Materialia</i> , 2016 , 111, 321-334	8.4	25
321	Functional adaptation of crustacean exoskeletal elements through structural and compositional diversity: a combined experimental and theoretical study. <i>Bioinspiration and Biomimetics</i> , 2016 , 11, 055	960	30
320	Identification of bulk oxide defects in an electrochemical environment. <i>Faraday Discussions</i> , 2015 , 180, 97-112	3.6	22
319	A first principles investigation of zinc induced embrittlement at grain boundaries in bcc iron. <i>Acta Materialia</i> , 2015 , 90, 69-76	8.4	45
318	From wetting to melting along grain boundaries using phase field and sharp interface methods. <i>Computational Materials Science</i> , 2015 , 108, 293-300	3.2	3
317	Ab initio study of compositional trends in solid solution strengthening in metals with low Peierls stresses. <i>Acta Materialia</i> , 2015 , 98, 367-376	8.4	18

(2015-2015)

316	From generalized stacking fault energies to dislocation properties: Five-energy-point approach and solid solution effects in magnesium. <i>Physical Review B</i> , 2015 , 92,	3.3	22
315	Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. <i>Acta Materialia</i> , 2015 , 100, 90-97	8.4	277
314	Structural transformations among austenite, ferrite and cementite in Feß alloys: A unified theory based on ab initio simulations. <i>Acta Materialia</i> , 2015 , 99, 281-289	8.4	46
313	Computationally efficient and quantitatively accurate multiscale simulation of solid-solution strengthening by ab initio calculation. <i>Acta Materialia</i> , 2015 , 85, 53-66	8.4	37
312	Connecting semiconductor defect chemistry with electrochemistry: Impact of the electrolyte on the formation and concentration of point defects in ZnO. <i>Surface Science</i> , 2015 , 631, 190-195	1.8	9
311	Importance of coordination number and bond length in titanium revealed by electronic structure investigations. <i>Physica Status Solidi (B): Basic Research</i> , 2015 , 252, 1907-1924	1.3	22
310	Improved method of calculating ab initio high-temperature thermodynamic properties with application to ZrC. <i>Physical Review B</i> , 2015 , 91,	3.3	60
309	Role of biaxial strain and microscopic ordering for structural and electronic properties of InxGa1IAN. <i>Physical Review B</i> , 2015 , 92,	3.3	4
308	Development and application of a Ni-Ti interatomic potential with high predictive accuracy of the martensitic phase transition. <i>Physical Review B</i> , 2015 , 92,	3.3	125
307	Mechanisms and kinetics of the migration of grain boundaries containing extended defects. <i>Physical Review B</i> , 2015 , 92,	3.3	15
306	Difference in linear polarization of biaxially strained InxGa1NN alloys on nonpolar a-plane and m-plane GaN. <i>Physical Review B</i> , 2015 , 92,	3.3	3
305	Comparison of design and torque measurements of various manual wrenches. <i>International Journal of Oral and Maxillofacial Implants</i> , 2015 , 30, 526-33	2.8	5
304	Effects of various chair-side surface treatment methods on dental restorative materials with respect to contact angles and surface roughness. <i>Dental Materials Journal</i> , 2015 , 34, 796-813	2.5	23
303	Synergy of atom-probe structural data and quantum-mechanical calculations in a theory-guided design of extreme-stiffness superlattices containing metastable phases. <i>New Journal of Physics</i> , 2015 , 17, 093004	2.9	13
302	Ab initio-based bulk and surface thermodynamics of InGaN alloys: Investigating the effects of strain and surface polarity. <i>Physica Status Solidi (B): Basic Research</i> , 2015 , 252, 855-865	1.3	14
301	Interplay of strain and interdiffusion in Heusler alloy bilayers. <i>Physica Status Solidi - Rapid Research Letters</i> , 2015 , 9, 321-325	2.5	5
300	Rapid theory-guided prototyping of ductile Mg alloys: from binary to multi-component materials. <i>New Journal of Physics</i> , 2015 , 17, 093009	2.9	29
299	Understanding Anharmonicity in fcc Materials: From its Origin to ab initio Strategies beyond the Quasiharmonic Approximation. <i>Physical Review Letters</i> , 2015 , 114, 195901	7.4	89

298	Random phase approximation up to the melting point: Impact of anharmonicity and nonlocal many-body effects on the thermodynamics of Au. <i>Physical Review B</i> , 2015 , 91,	3.3	17
297	Multiscale description of dislocation induced nano-hydrides. <i>Acta Materialia</i> , 2015 , 89, 50-59	8.4	21
296	Influence of the dislocation core on the glide of the [] <1 1 1>{1 1 0} edge dislocation in bcc-iron: An embedded atom method study. <i>Computational Materials Science</i> , 2014 , 87, 274-282	3.2	11
295	Breakdown of the Arrhenius Law in Describing Vacancy Formation Energies: The Importance of Local Anharmonicity Revealed by Ab initio Thermodynamics. <i>Physical Review X</i> , 2014 , 4,	9.1	70
294	Ab initio based study of finite-temperature structural, elastic and thermodynamic properties of FeTi. <i>Intermetallics</i> , 2014 , 45, 11-17	3.5	13
293	Extending the Concept of Defect Chemistry from Semiconductor Physics to Electrochemistry. <i>Physical Review Applied</i> , 2014 , 1,	4.3	54
292	Understanding and controlling indium incorporation and surface segregation on InxGa1⊠N surfaces: An ab initio approach. <i>Physical Review B</i> , 2014 , 89,	3.3	41
291	Scale bridging between atomistic and mesoscale modelling: applications of amplitude equation descriptions. <i>Modelling and Simulation in Materials Science and Engineering</i> , 2014 , 22, 034001	2	5
2 90	Ab initio study of point defects in NiTi-based alloys. <i>Physical Review B</i> , 2014 , 89,	3.3	23
289	Separating strain from composition in unit cell parameter maps obtained from aberration corrected high resolution transmission electron microscopy imaging. <i>Journal of Applied Physics</i> , 2014 , 115, 03311.	2 5	9
		3 ^{2.5}	
288	Phase-field modeling of grain-boundary premelting using obstacle potentials. <i>Physical Review E</i> , 2014 , 90, 012401	2.4	18
288	Phase-field modeling of grain-boundary premelting using obstacle potentials. <i>Physical Review E</i> ,		
	Phase-field modeling of grain-boundary premelting using obstacle potentials. <i>Physical Review E</i> , 2014 , 90, 012401 Reliability evaluation of thermophysical properties from first-principles calculations. <i>Journal of</i>	2.4	18
287	Phase-field modeling of grain-boundary premelting using obstacle potentials. <i>Physical Review E</i> , 2014 , 90, 012401 Reliability evaluation of thermophysical properties from first-principles calculations. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 335401	2.4	18
287	Phase-field modeling of grain-boundary premelting using obstacle potentials. <i>Physical Review E</i> , 2014 , 90, 012401 Reliability evaluation of thermophysical properties from first-principles calculations. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 335401 A generalized plane-wave formulation of . <i>Computational Materials Science</i> , 2014 , 95, 280-287 Ab Initio Predicted Impact of Pt on Phase Stabilities in Ni-Mn-Ga Heusler Alloys. <i>Journal of Phase</i>	2.4 1.8 3.2	18 8 24
287 286 285	Phase-field modeling of grain-boundary premelting using obstacle potentials. <i>Physical Review E</i> , 2014 , 90, 012401 Reliability evaluation of thermophysical properties from first-principles calculations. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 335401 A generalized plane-wave formulation of . <i>Computational Materials Science</i> , 2014 , 95, 280-287 Ab Initio Predicted Impact of Pt on Phase Stabilities in Ni-Mn-Ga Heusler Alloys. <i>Journal of Phase Equilibria and Diffusion</i> , 2014 , 35, 695-700 Temperature dependent magnon-phonon coupling in bcc Fe from theory and experiment. <i>Physical</i>	2.4 1.8 3.2	18 8 24 11
287 286 285 284	Phase-field modeling of grain-boundary premelting using obstacle potentials. <i>Physical Review E</i> , 2014 , 90, 012401 Reliability evaluation of thermophysical properties from first-principles calculations. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 335401 A generalized plane-wave formulation of . <i>Computational Materials Science</i> , 2014 , 95, 280-287 Ab Initio Predicted Impact of Pt on Phase Stabilities in Ni-Mn-Ga Heusler Alloys. <i>Journal of Phase Equilibria and Diffusion</i> , 2014 , 35, 695-700 Temperature dependent magnon-phonon coupling in bcc Fe from theory and experiment. <i>Physical Review Letters</i> , 2014 , 113, 165503 Ab Initio Based Understanding of the Segregation and Diffusion Mechanisms of Hydrogen in Steels.	2.4 1.8 3.2 1	18 8 24 11 68

(2013-2014)

280	Impact of nanodiffusion on the stacking fault energy in high-strength steels. <i>Acta Materialia</i> , 2014 , 75, 147-155	8.4	57
279	Designing Heusler nanoprecipitates by elastic misfit stabilization in FeMn maraging steels. <i>Acta Materialia</i> , 2014 , 76, 94-105	8.4	53
278	Role of the mesoscale in migration kinetics of flat grain boundaries. <i>Physical Review B</i> , 2014 , 89,	3.3	30
277	Impact of Mn on the solution enthalpy of hydrogen in austenitic Fe-Mn alloys: a first-principles study. <i>Journal of Computational Chemistry</i> , 2014 , 35, 2239-44	3.5	6
276	Ordering phenomena and formation of nanostructures in InxGa1NN layers coherently grown on GaN(0001). <i>Physical Review B</i> , 2014 , 90,	3.3	17
275	Structural stability and thermodynamics of CrN magnetic phases from ab initio calculations and experiment. <i>Physical Review B</i> , 2014 , 90,	3.3	78
274	Macroscopic elastic properties of textured ZrN-AlN polycrystalline aggregates: From ab initio calculations to grain-scale interactions. <i>Physical Review B</i> , 2014 , 90,	3.3	28
273	Origin of the unusually strong luminescence of a-type screw dislocations in GaN. <i>Physical Review B</i> , 2014 , 90,	3.3	18
272	Influence of short-range forces on melting along grain boundaries. <i>Physical Review B</i> , 2014 , 89,	3.3	6
271	Negatively charged ions on Mg(0001) surfaces: appearance and origin of attractive adsorbate-adsorbate interactions. <i>Physical Review Letters</i> , 2014 , 113, 136102	7.4	17
270	Ab initio study of H-vacancy interactions in fcc metals: Implications for the formation of superabundant vacancies. <i>Physical Review B</i> , 2014 , 89,	3.3	61
269	First-principles calculations for point defects in solids. <i>Reviews of Modern Physics</i> , 2014 , 86, 253-305	40.5	1431
268	Thermodynamics of carbon solubility in ferrite and vacancy formation in cementite in strained pearlite. <i>Acta Materialia</i> , 2013 , 61, 1773-1784	8.4	32
267	Polarization effects due to thickness fluctuations in nonpolar InGaN/GaN quantum wells. <i>Applied Physics Letters</i> , 2013 , 103, 073115	3.4	7
266	Hidden surface states at non-polar GaN (101🗅) facets: Intrinsic pinning of nanowires. <i>Applied Physics Letters</i> , 2013 , 103, 152101	3.4	39
265	Ab Initio Guided Design of Materials 2013 , 481-495		
264	Ab initio study of thermodynamic, electronic, magnetic, structural, and elastic properties of Ni4N allotropes. <i>Physical Review B</i> , 2013 , 88,	3.3	18
263	Interplay between Coulomb interaction and quantum-confined Stark-effect in polar and nonpolar wurtzite InN/GaN quantum dots. <i>European Physical Journal B</i> , 2013 , 86, 1	1.2	15

262	Density functional theory in materials science. <i>Wiley Interdisciplinary Reviews: Computational Molecular Science</i> , 2013 , 3, 438-448	7.9	80
261	Ab initio based conformational study of the crystalline Ethitin. <i>Biopolymers</i> , 2013 , 99, 22-34	2.2	24
260	Basal and non-basal dislocation slip in MgM. <i>Materials Science & Dislocation A: Structural Materials: Properties, Microstructure and Processing,</i> 2013 , 576, 61-68	5.3	153
259	Ab initio study of single-crystalline and polycrystalline elastic properties of Mg-substituted calcite crystals. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2013 , 20, 296-304	4.1	25
258	CHAPTER 9:Multi-scale Modelling of a Biological Material: The Arthropod Exoskeleton. <i>RSC Smart Materials</i> , 2013 , 197-218	0.6	2
257	Dangling-bond defect in a-Si:H: Characterization of network and strain effects by first-principles calculation of the EPR parameters. <i>Physical Review B</i> , 2013 , 87,	3.3	14
256	Ab initioand atomistic study of generalized stacking fault energies in Mg and MgI alloys. <i>New Journal of Physics</i> , 2013 , 15, 043020	2.9	80
255	Thermodynamic modeling of chromium: strong and weak magnetic coupling. <i>Journal of Physics Condensed Matter</i> , 2013 , 25, 425401	1.8	12
254	Quantum-Mechanical Study of Single-Crystalline and Polycrystalline Elastic Properties of Mg-Substituted Calcite Crystals. <i>Key Engineering Materials</i> , 2013 , 592-593, 335-341	0.4	2
253	Band offsets at zincblende-wurtzite GaAs nanowire sidewall surfaces. <i>Applied Physics Letters</i> , 2013 , 103, 122104	3.4	27
252	identified design principles of solid-solution strengthening in Al. <i>Science and Technology of Advanced Materials</i> , 2013 , 14, 025001	7.1	8
251	Blocking growth by an electrically active subsurface layer: the effect of Si as an antisurfactant in the growth of GaN. <i>Physical Review Letters</i> , 2013 , 110, 036103	7.4	54
250	GaN(0001) surface states: Experimental and theoretical fingerprints to identify surface reconstructions. <i>Physical Review B</i> , 2013 , 88,	3.3	33
249	Interfacial structure and chemistry of GaN on Ge(111). <i>Physical Review Letters</i> , 2013 , 111, 256101	7.4	5
248	Self-consistent Scale-bridging Approach to Compute the Elasticity of Multi-phase Polycrystalline Materials. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1524, 301		24
247	Three-Dimensional Diagnosis and Treatment Planning of Dentoalveolar Problems 2013 , 89-111		
246	CBCT device dependency on the transfer accuracy from computer-aided implantology procedures. <i>Clinical Oral Implants Research</i> , 2012 , 23, 1089-97	4.8	17
245	Combined ab initio, experimental, and CALPHAD approach for an improved thermodynamic evaluation of the MgBi system. <i>Calphad: Computer Coupling of Phase Diagrams and Thermochemistry</i> , 2012 , 37, 77-86	1.9	17

(2011-2012)

244	The dangling-bond defect in amorphous silicon: Statistical random versus kinetically driven defect geometries. <i>Journal of Non-Crystalline Solids</i> , 2012 , 358, 2063-2066	3.9	11
243	Advancing density functional theory to finite temperatures: methods and applications in steel design. <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 053202	1.8	66
242	Atomic forces at finite magnetic temperatures: Phonons in paramagnetic iron. <i>Physical Review B</i> , 2012 , 85,	3.3	114
241	Trends in the elastic response of binary early transition metal nitrides. <i>Physical Review B</i> , 2012 , 85,	3.3	121
240	Ab initio EPR parameters for dangling-bond defect complexes in silicon: Effect of Jahn-Teller distortion. <i>Physical Review B</i> , 2012 , 85,	3.3	12
239	Vacancy formation energies in fcc metals: Influence of exchange-correlation functionals and correction schemes. <i>Physical Review B</i> , 2012 , 85,	3.3	69
238	Ab Initio-Based Prediction of Phase Diagrams: Application to Magnetic Shape Memory Alloys. <i>Advanced Engineering Materials</i> , 2012 , 14, 547-561	3.5	32
237	A flexible, plane-wave based multiband ({mathbf{k}cdotmathbf{p}}) model. <i>Optical and Quantum Electronics</i> , 2012 , 44, 183-188	2.4	21
236	First-principles study of the thermodynamic and elastic properties of eutectic FeIIi alloys. <i>Acta Materialia</i> , 2012 , 60, 1594-1602	8.4	33
235	The relation between ductility and stacking fault energies in Mg and MgM alloys. <i>Acta Materialia</i> , 2012 , 60, 3011-3021	8.4	359
234	Strong dipole coupling in nonpolar nitride quantum dots due to Coulomb effects. <i>Applied Physics Letters</i> , 2012 , 100, 092103	3.4	16
233	Reconstructions and electronic structure of (112½) and (112½) semipolar AlN surfaces. <i>Journal of Applied Physics</i> , 2012 , 112, 033510	2.5	7
232	Solution enthalpy of hydrogen in fourth row elements: Systematic trends derived from first principles. <i>Physical Review B</i> , 2012 , 85,	3.3	12
231	Theory-Guided Materials Design of Multi-Phase Ti-Nb Alloys with Bone-Matching Elastic Properties. <i>Materials</i> , 2012 , 5, 1853-1872	3.5	62
230	Combined multifrequency EPR and DFT study of dangling bonds in a-Si:H. <i>Physical Review B</i> , 2011 , 84,	3.3	27
229	Temperature-driven phase transitions from first principles including all relevant excitations: The fcc-to-bcc transition in Ca. <i>Physical Review B</i> , 2011 , 84,	3.3	43
228	Chitin in the Exoskeletons of Arthropoda: From Ancient Design to Novel Materials Science. <i>Topics in Geobiology</i> , 2011 , 35-60	0.2	27
227	First-principles study on the interaction of H interstitials with grain boundaries in ∃and Fe. Physical Review B, 2011 , 84,	3.3	150

226	Growth process, characterization, and modeling of electronic properties of coupled InAsSbP nanostructures. <i>Journal of Applied Physics</i> , 2011 , 110, 043708	2.5	14
225	Ab initio study of electron paramagnetic resonance hyperfine structure of the silicon dangling bond: Role of the local environment. <i>Physical Review B</i> , 2011 , 83,	3.3	5
224	Designing shape-memory Heusler alloys from first-principles. <i>Applied Physics Letters</i> , 2011 , 99, 191904	3.4	80
223	Anisotropic mechanical behavior of ultrafine eutectic TiFe cast under non-equilibrium conditions. <i>Intermetallics</i> , 2011 , 19, 327-335	3.5	24
222	Prevalence of pathologic findings in the maxillary sinus in cone-beam computerized tomography. <i>Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics</i> , 2011 , 111, 634-40		84
221	Orientational ordering of interstitial atoms and martensite formation in dilute Fe-based solid solutions. <i>Physical Review B</i> , 2011 , 83,	3.3	33
220	Time-Dependent Density Functional Study on the Excitation Spectrum of Point Defects in Semiconductors 2011 , 341-358		
219	Strain-induced effects on the electronic structure and N K-edge ELNES of wurtzite A1N and AlxGa1NN. <i>Journal of Physics: Conference Series</i> , 2011 , 326, 012016	0.3	1
218	Electrostatic Interactions between Charged Defects in Supercells 2011 , 241-258		
217	Overcoming Bipolar Doping Difficulty in Wide Gap Semiconductors 2011 , 213-239		6
216	Accurate Gap Levels and Their Role in the Reliability of Other Calculated Defect Properties 2011 , 139-1	54	
215	Accurate Kohnßham DFT With the Speed of Tight Binding: Current Techniques and Future Directions in Materials Modelling 2011 , 285-303		
214	Which Electronic Structure Method for The Study of Defects: A Commentary 2011 , 359-379		
213			
219	Formation Energies of Point Defects at Finite Temperatures 2011 , 259-284		
212	Formation Energies of Point Defects at Finite Temperatures 2011 , 259-284 Methodological challenges in combining quantum-mechanical and continuum approaches for materials science applications. <i>European Physical Journal Plus</i> , 2011 , 126, 1	3.1	20
	Methodological challenges in combining quantum-mechanical and continuum approaches for	3.1	309
212	Methodological challenges in combining quantum-mechanical and continuum approaches for materials science applications. <i>European Physical Journal Plus</i> , 2011 , 126, 1 Electrostatic interactions between charged defects in supercells. <i>Physica Status Solidi (B): Basic</i>		

208	Determining the Elasticity of Materials Employing Quantum-mechanical Approaches: From the Electronic Ground State to the Limits of Materials Stability. <i>Steel Research International</i> , 2011 , 82, 86-10	ođ ^{.6}	26	
207	Ab initio based determination of thermodynamic properties of cementite including vibronic, magnetic, and electronic excitations. <i>Physical Review B</i> , 2011 , 84,	3.3	50	
206	The Relation between Shear Banding, Microstructure and Mechanical Properties in Mg and Mg-Y Alloys. <i>Materials Science Forum</i> , 2011 , 690, 202-205	0.4	16	
205	A flexible, plane-wave-based formulation of continuum elasticity and multiband klp models 2011 ,		1	
204	The object-oriented DFT program library S/PHI/nX. <i>Computer Physics Communications</i> , 2011 , 182, 543-5	554.2	61	
203	Hydrogen-enhanced local plasticity at dilute bulk H concentrations: The role of H⊞ interactions and the formation of local hydrides. <i>Acta Materialia</i> , 2011 , 59, 2969-2980	8.4	105	
202	First-principles investigation of the effect of carbon on the stacking fault energy of Fe f alloys. <i>Acta Materialia</i> , 2011 , 59, 3041-3048	8.4	89	
201	In situ scanning tunneling microscopy study of selective dissolution of Au3Cu and Cu3Au (001). <i>Electrochimica Acta</i> , 2011 , 56, 1694-1700	6.7	16	
200	Robustness and optimal use of design principles of arthropod exoskeletons studied by ab initio-based multiscale simulations. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2011 , 4, 129-45	4.1	87	
199	The influence of additions of Al and Si on the lattice stability of fcc and hcp Fe-Mn random alloys. <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 246003	1.8	16	
198	Role of spin quantization in determining the thermodynamic properties of magnetic transition metals. <i>Physical Review B</i> , 2011 , 83,	3.3	36	
197	Construction and performance of fully numerical optimum atomic basis sets. <i>Physical Review B</i> , 2011 , 84,	3.3	2	
196	Quasiparticle band offsets of semiconductor heterojunctions from a generalized marker method. <i>Physical Review B</i> , 2011 , 84,	3.3	11	
195	Ab initio study of pressure stabilized NiTi allotropes: Pressure-induced transformations and hysteresis loops. <i>Physical Review B</i> , 2011 , 84,	3.3	29	
194	A density functional theory based estimation of the anharmonic contributions to the free energy of a polypeptide helix. <i>Journal of Chemical Physics</i> , 2011 , 135, 084122	3.9	1	
193	LDA + U and Hybrid Functional Calculations for Defects in ZnO, SnO2, and TiO2 2011 , 155-164		1	
192	Defect Levels Through Hybrid Density Functionals: Insights and Applications 2011 , 111-137		1	
191	Electronic Properties of Interfaces and Defects from Many-Body Perturbation Theory: Recent Developments and Applications 2011 , 33-60			

190	Advances in Electronic Structure Methods for Defects and Impurities in Solids 2011 , 1-16		3
189	Electronic structure of 1/6<202 ¹ B> partial dislocations in wurtzite GaN. <i>Journal of Applied Physics</i> , 2011 , 109, 083511	2.5	15
188	CAD/CAM-produced surgical guides: Optimizing the treatment workflow. <i>International Journal of Computerized Dentistry</i> , 2011 , 14, 93-103	4.5	5
187	Rescaled Monte Carlo approach for magnetic systems: Ab initio thermodynamics of bcc iron. <i>Physical Review B</i> , 2010 , 81,	3.3	51
186	Ab initio study of the solubility and kinetics of hydrogen in austenitic high Mn steels. <i>Physical Review B</i> , 2010 , 81,	3.3	24
185	Native and hydrogen-containing point defects in Mg3N2: A density functional theory study. <i>Physical Review B</i> , 2010 , 81,	3.3	21
184	Computer-aided manufacturing technologies for guided implant placement. <i>Expert Review of Medical Devices</i> , 2010 , 7, 113-29	3.5	35
183	L21-ordered FeAlli alloys. <i>Intermetallics</i> , 2010 , 18, 1360-1364	3.5	17
182	Combined ab initio and experimental study of structural and elastic properties of Fe3Al-based ternaries. <i>Intermetallics</i> , 2010 , 18, 1310-1315	3.5	28
181	Ab initio study of the anomalous volume-composition dependence in FeAl alloys. <i>Intermetallics</i> , 2010 , 18, 1316-1321	3.5	30
180	Thermodynamic properties of cementite (Fe3C). <i>Calphad: Computer Coupling of Phase Diagrams and Thermochemistry</i> , 2010 , 34, 129-133	1.9	64
179	Comparison of cone-beam computerized tomography and intraoral radiographs for determination of the periodontal ligament in a variable phantom. <i>Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics</i> , 2010 , 109, e95-101		23
178	Salivary calculus diagnosis with 3-dimensional cone-beam computed tomography. <i>Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics</i> , 2010 , 110, 94-100		29
177	Hydrogen adsorption on polar ZnO(0001)-Zn: Extending equilibrium surface phase diagrams to kinetically stabilized structures. <i>Physical Review B</i> , 2010 , 82,	3.3	56
176	Generation and performance of special quasirandom structures for studying the elastic properties of random alloys: Application to Al-Ti. <i>Physical Review B</i> , 2010 , 81,	3.3	129
175	First-principles study of the thermodynamics of hydrogen-vacancy interaction in fcc iron. <i>Physical Review B</i> , 2010 , 82,	3.3	85
174	Using Ab Initio Calculations in Designing bcc MgLi X Alloys for Ultra-Lightweight Applications. <i>Advanced Engineering Materials</i> , 2010 , 12, 1198-1205	3.5	17
173	Revealing the design principles of high-performance biological composites using ab initio and multiscale simulations: the example of lobster cuticle. <i>Advanced Materials</i> , 2010 , 22, 519-26	24	239

(2009-2010)

172	Ab Initio Guided Design of bcc Ternary Mg \blacksquare i \mathbb{K} (X = Ca, Al, Si, Zn, Cu) Alloys for Ultra-Lightweight Applications. <i>Advanced Engineering Materials</i> , 2010 , 12, 572-576	3.5	15
171	Ab initio study of thermodynamic, structural, and elastic properties of Mg-substituted crystalline calcite. <i>Acta Biomaterialia</i> , 2010 , 6, 4506-12	10.8	39
170	Plane-wave implementation of the real-space formalism and continuum elasticity theory. <i>Computer Physics Communications</i> , 2010 , 181, 765-771	4.2	27
169	Evaluation of maxillary sinus anatomy by cone-beam CT prior to sinus floor elevation. <i>International Journal of Oral and Maxillofacial Implants</i> , 2010 , 25, 258-65	2.8	57
168	Enhancing nitrogen solubility in GaAs and InAs by surface kinetics: An ab initio study. <i>Physical Review B</i> , 2009 , 79,	3.3	18
167	Large anisotropic adatom kinetics on nonpolar GaN surfaces: Consequences for surface morphologies and nanowire growth. <i>Physical Review B</i> , 2009 , 79,	3.3	160
166	Temperature stabilized surface reconstructions at polar ZnO(0001). <i>Physical Review Letters</i> , 2009 , 103, 065502	7.4	110
165	Interplay between long-range elastic and short-range chemical interactions in Fe-C martensite formation. <i>Physical Review B</i> , 2009 , 79,	3.3	41
164	Polarization-induced charge carrier separation in polar and nonpolar grown GaN quantum dots. <i>Journal of Applied Physics</i> , 2009 , 106, 083707	2.5	27
163	Klinisches Vorgehen f∃den erfolgreichen Einsatz einteiliger Keramikimplantate. <i>Zwr</i> , 2009 , 118, 101-1	060.1	
162	Experimental immediate loading of dental implants in conjunction with grafting procedures. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91, 604-12	3.5	2
161	Peri-implant bone organization under immediate loading conditions: collagen fiber orientation and mineral density analyses in the minipig model. <i>Clinical Implant Dentistry and Related Research</i> , 2009 , 11, 41-51	3.9	21
160	Accuracy of a newly developed integrated system for dental implant planning. <i>Clinical Oral Implants Research</i> , 2009 , 20, 1191-9	4.8	60
159	Using ab initio calculations in designing bcc MgIIi alloys for ultra-lightweight applications. <i>Acta Materialia</i> , 2009 , 57, 69-76	8.4	115
158	Atomistic calculations on interfaces: Bridging the length and time scales. <i>European Physical Journal: Special Topics</i> , 2009 , 177, 41-57	2.3	8
157	The influence of body mass index, age, implants, and dental restorations on image quality of cone beam computed tomography. <i>Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics</i> , 2009 , 108, e108-16		26
156	Intraoral molluscum contagiosum imitating a squamous-cell carcinoma in an immunocompetent personcase report and review of the literature. <i>International Journal of Oral and Maxillofacial Surgery</i> , 2009 , 38, 802-5	2.9	9
155	Understanding the phase transitions of the Ni2MnGa magnetic shape memory system from first principles. <i>Physical Review Letters</i> , 2009 , 102, 035702	7.4	123

154	Fully ab initio finite-size corrections for charged-defect supercell calculations. <i>Physical Review Letters</i> , 2009 , 102, 016402	7.4	845
153	Direct minimization technique for metals in density functional theory. <i>Physical Review B</i> , 2009 , 79,	3.3	40
152	Ab initio up to the melting point: Anharmonicity and vacancies in aluminum. <i>Physical Review B</i> , 2009 , 79,	3.3	184
151	Pressure dependence of the Curie temperature in bcc iron studied by ab initio simulations. <i>Physical Review B</i> , 2009 , 79,	3.3	44
150	Comparison of cone-beam imaging with orthopantomography and computerized tomography for assessment in presurgical implant dentistry. <i>International Journal of Oral and Maxillofacial Implants</i> , 2009 , 24, 216-25	2.8	44
149	A map for phase-change materials. <i>Nature Materials</i> , 2008 , 7, 972-7	27	559
148	Solitary hydatid cyst in the mandible: case report and review of the literature. <i>Journal of Oral and Maxillofacial Surgery</i> , 2008 , 66, 1731-6	1.8	5
147	Comparison of atomistic and continuum theoretical approaches to determine electronic properties of GaN/AlN quantum dots. <i>Physical Review B</i> , 2008 , 78,	3.3	53
146	Comparison of cone-beam volumetric imaging and combined plain radiographs for localization of the mandibular canal before removal of impacted lower third molars. <i>Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics</i> , 2008 , 105, 633-42; discussion 643		44
145	Consistent set of band parameters for the group-III nitrides AlN, GaN, and InN. <i>Physical Review B</i> , 2008 , 77,	3.3	306
144	First-principles free-energy analysis of helix stability: the origin of the low entropy in pi helices. Journal of Physical Chemistry B, 2008 , 112, 4109-12	3.4	13
143	Free energy of bcc iron: Integrated ab initio derivation of vibrational, electronic, and magnetic contributions. <i>Physical Review B</i> , 2008 , 78,	3.3	152
142	Diagnostic quality of multiplanar reformations obtained with a newly developed cone beam device for maxillofacial imaging. <i>Dentomaxillofacial Radiology</i> , 2008 , 37, 1-9	3.9	22
141	Ab Initio Study of Elastic Properties in Fe3Al-based Alloys. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1128, 20401		3
140	Determination of symmetry reduced structures using a soft phonon analysis for magnetic shape memory alloys (abstract only). <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 064219	1.8	1
139	Theory-guided design of Ti-based binaries for human implants (abstract only). <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 064221	1.8	
138	Exciting prospects for solids: Exact-exchange based functionals meet quasiparticle energy calculations. <i>Physica Status Solidi (B): Basic Research</i> , 2008 , 245, 929-945	1.3	82
137	Modern Developments in Multiphysics Materials Simulations. <i>Physica Status Solidi (B): Basic Research</i> , 2008 , 245, 2617-2617	1.3	1

(2006-2008)

136	A comparison of polycrystalline elastic properties computed by analytic homogenization schemes and FEM. <i>Physica Status Solidi (B): Basic Research</i> , 2008 , 245, 2630-2635	1.3	21	
135	Multiscale simulation of polycrystal mechanics of textured ITi alloys using ab initio and crystal-based finite element methods. <i>Physica Status Solidi (B): Basic Research</i> , 2008 , 245, 2642-2648	1.3	24	
134	Error propagation in multiscale approaches to the elasticity of polycrystals. <i>Physica Status Solidi (B): Basic Research</i> , 2008 , 245, 2636-2641	1.3	14	
133	Ab initio study of the thermodynamic properties of nonmagnetic elementary fcc metals: Exchange-correlation-related error bars and chemical trends. <i>Physical Review B</i> , 2007 , 76,	3.3	184	
132	Theory-guided bottom-up design of Etitanium alloys as biomaterials based on first principles calculations: Theory and experiments. <i>Acta Materialia</i> , 2007 , 55, 4475-4487	8.4	188	
131	Compositional correlation and anticorrelation in quaternary alloys: competition between bulk thermodynamics and surface kinetics. <i>Physical Review Letters</i> , 2007 , 99, 206103	7.4	16	
130	Geometric accuracy of a newly developed cone-beam device for maxillofacial imaging. <i>Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics</i> , 2007 , 104, 551-9		140	
129	Intraoperative navigation in the maxillofacial area based on 3D imaging obtained by a cone-beam device. <i>International Journal of Oral and Maxillofacial Surgery</i> , 2007 , 36, 687-94	2.9	45	
128	First-principles calculations of the structural and electronic properties of clean GaN(0001) surfaces. <i>Physical Review B</i> , 2006 , 73,	3.3	100	
127	Energy-dependent contrast in atomic-scale spin-polarized scanning tunneling microscopy of Mn3N2 (010): Experiment and first-principles theory. <i>Physical Review B</i> , 2006 , 74,	3.3	10	
126	Bulk electronic structure of metals resolved with scanning tunneling microscopy. <i>Physical Review Letters</i> , 2006 , 96, 046801	7.4	15	
125	HYDROGEN IN SEMICONDUCTORS. Annual Review of Materials Research, 2006, 36, 179-198	12.8	127	
124	Understanding Si adsorption on GaN(0001) surfaces using first-principles calculations. <i>Physical Review B</i> , 2006 , 73,	3.3	40	
123	Band gap and band parameters of InN and GaN from quasiparticle energy calculations based on exact-exchange density-functional theory. <i>Applied Physics Letters</i> , 2006 , 89, 161919	3.4	134	
122	Peri-implant bone organization under immediate loading state. Circularly polarized light analyses: a minipig study. <i>Journal of Periodontology</i> , 2006 , 77, 152-60	4.6	51	
121	Lateral femoral cutaneous nerve and iliac crest bone graftsanatomical and clinical considerations. <i>International Journal of Oral and Maxillofacial Surgery</i> , 2006 , 35, 366-72	2.9	49	
120	Exact-exchange-based quasiparticle energy calculations for the band gap, effective masses, and deformation potentials of ScN. <i>Physical Review B</i> , 2006 , 74,	3.3	78	
119	Surface Structure and Adatom Kinetics of Group-III Nitrides 2006 , 295-318		1	

118	Generalized Wannier functions: An efficient way to construct ab-initio tight-binding parameters for group-III nitrides. <i>Physica Status Solidi (B): Basic Research</i> , 2006 , 243, 1583-1587	1.3	6
117	Polarity inversion of GaN(0001) surfaces induced by Si adsorption. <i>Surface Science</i> , 2006 , 600, 335-339	1.8	11
116	Comparison of static and dynamic computer-assisted guidance methods in implantology. <i>International Journal of Computerized Dentistry</i> , 2006 , 9, 23-35	4.5	44
115	Structural transitions in the polyalanine alpha-helix under uniaxial strain. <i>Journal of the American Chemical Society</i> , 2005 , 127, 17241-4	16.4	22
114	CombiningGWcalculations with exact-exchange density-functional theory: an analysis of valence-band photoemission for compound semiconductors. <i>New Journal of Physics</i> , 2005 , 7, 126-126	2.9	250
113	Exact-exchange calculations of the electronic structure of AlN, GaN and InN. <i>Computer Physics Communications</i> , 2005 , 169, 28-31	4.2	19
112	A case of chronic calcium pyrophosphate dihydrate crystal disease (tophaceous pseudogout) in the temporomandibular joint. <i>Oral Diseases</i> , 2005 , 11, 113-5	3.5	17
111	Quantitative evaluation of the fibrin clot extension on different implant surfaces: an in vitro study. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 74, 636-42	3.5	43
110	Recent advances in atomic-scale spin-polarized scanning tunneling microscopy. <i>Microscopy Research and Technique</i> , 2005 , 66, 72-84	2.8	7
109	Metal-adlayer-stabilized ZnO(0001) surfaces: Toward a new growth mode for oxides. <i>Applied Physics Letters</i> , 2005 , 87, 141914	3.4	17
108	Role of semicore states in the electronic structure of group-III nitrides: An exact-exchange study. <i>Physical Review B</i> , 2005 , 72,	3.3	37
107	Chemically ordered AlxGa1NN alloys: Spontaneous formation of natural quantum wells. <i>Physical Review B</i> , 2005 , 71,	3.3	47
106	Phonon spectra and thermodynamic properties of the infinite polyalanine alpha helix: a density-functional-theory-based harmonic vibrational analysis. <i>Physical Review E</i> , 2005 , 71, 031911	2.4	13
105	On the Accuracy of DFT for Describing Hydrogen Bonds: Dependence on the Bond Directionality. Journal of Physical Chemistry A, 2004 , 108, 5692-5698	2.8	324
104	Aspects of spin-polarized scanning tunneling microscopy at the atomic scale: experiment, theory, and simulation. <i>Surface Science</i> , 2004 , 561, 154-170	1.8	19
103	First-principles calculations for defects and impurities: Applications to III-nitrides. <i>Journal of Applied Physics</i> , 2004 , 95, 3851-3879	2.5	2330
102	Strong affinity of hydrogen for the GaN(000-1) surface: Implications for molecular beam epitaxy and metalorganic chemical vapor deposition. <i>Applied Physics Letters</i> , 2004 , 85, 3429-3431	3.4	75
101	Strain induced deep electronic states around threading dislocations in GaN. <i>Physical Review Letters</i> , 2004 , 93, 196401	7.4	98

(2002-2004)

100	Growth and proliferation of human osteoblasts on different bone graft substitutes: an in vitro study. <i>Implant Dentistry</i> , 2004 , 13, 171-9	2.4	70
99	Bone contact, growth, and density around immediately loaded implants in the mandible of mini pigs. <i>Clinical Oral Implants Research</i> , 2003 , 14, 312-21	4.8	96
98	Surfactants and antisurfactants on group-III-nitride surfaces. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2003 , 1651-1667		45
97	Universal alignment of hydrogen levels in semiconductors, insulators and solutions. <i>Nature</i> , 2003 , 423, 626-8	50.4	1003
96	Structure and energetics of nitride surfaces under MOCVD growth conditions. <i>Journal of Crystal Growth</i> , 2003 , 248, 8-13	1.6	36
95	Gallium adsorption on (0001) GaN surfaces. <i>Physical Review B</i> , 2003 , 67,	3.3	118
94	Reconstructions of the AlN(0001) surface. <i>Physical Review B</i> , 2003 , 68,	3.3	66
93	Density Functional Theory Study of the Cooperativity of Hydrogen Bonds in Finite and Infinite Helices. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 1432-1437	3.4	99
92	Adatom kinetics on and below the surface: the existence of a new diffusion channel. <i>Physical Review Letters</i> , 2003 , 90, 056101	7.4	267
91	Growth and Surface Reconstructions of AIN(0001) Films. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 798, 383		
90	Morphology and surface reconstructions of GaN(11 00) surfaces. <i>Applied Physics Letters</i> , 2003 , 82, 1793	B-3ZP5	32
89	Al(111)-(3B)R30: On-top versus substitutional adsorption for Rb and K. <i>Physical Review B</i> , 2003 , 68,	3.3	3
88	Adatom density kinetic Monte Carlo: A hybrid approach to perform epitaxial growth simulations. <i>Physical Review B</i> , 2003 , 68,	3.3	28
87	Cohesive properties of group-III nitrides: A comparative study of all-electron and pseudopotential calculations using the generalized gradient approximation. <i>Physical Review B</i> , 2002 , 65,	3.3	118
86	Role of hydrogen in surface reconstructions and growth of GaN. <i>Journal of Vacuum Science</i> & <i>Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2002 , 20, 1640		26
85	Phase Transitions on Gan Surfaces. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 743, L3.9.1		1
84	Morphology and surface reconstructions of m-plane GaN. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 743, L4.1.1		1
83	Review of Structure of Bare and Adsorbate-Covered GaN(0001) Surfaces. MRS Internet Journal of Nitride Semiconductor Research, 2002, 7, 1		59

82	First-principles surface phase diagram for hydrogen on GaN surfaces. <i>Physical Review Letters</i> , 2002 , 88, 066103	7.4	216
81	Adsorption and incorporation of silicon at GaN(0001) surfaces. <i>Applied Physics Letters</i> , 2002 , 80, 2008-2	03.4	52
8o	Indium incorporation and surface segregation during InGaN growth by molecular beam epitaxy: experiment and theory. MRS Internet Journal of Nitride Semiconductor Research, 2001, 6, 1		39
79	Ab initio Analysis of Surface Structure and Adatom Kinetics of Group-III Nitrides. <i>Physica Status Solidi (B): Basic Research</i> , 2001 , 227, 93-114	1.3	47
78	Silicon on GaN(0001) and (0001) surfaces. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2001 , 19, 1619		8
77	First-principles studies of beryllium doping of GaN. <i>Physical Review B</i> , 2001 , 63,	3.3	124
76	Identification of surface anion antisite defects in (110) surfaces of IIII semiconductors. <i>Applied Physics Letters</i> , 2001 , 79, 2877-2879	3.4	14
75	Limits and accuracy of valence force field models for InxGa1⊠N alloys. <i>Physical Review B</i> , 2001 , 63,	3.3	48
74	Controlling the conductivity of wide-band-gap semiconductors. <i>Springer Proceedings in Physics</i> , 2001 , 3-8	0.2	
73	Stability, diffusion, and complex formation of beryllium in wurtzite GaN. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 639, 431		O
72	Theory of surfaces and interfaces of group III-nitrides. <i>Applied Surface Science</i> , 2000 , 159-160, 355-359	6.7	26
71	SURFACE MORPHOLOGY OF GaN SURFACES DURING MOLECULAR BEAM EPITAXY. <i>Surface Review and Letters</i> , 2000 , 07, 601-606	1.1	16
70	Surface structures and growth kinetics of InGaN(0001) grown by molecular beam epitaxy. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2000 , 18, 2284		67
69	Symmetric versus nonsymmetric structure of the phosphorus vacancy on InP(110). <i>Physical Review Letters</i> , 2000 , 84, 5816-9	7.4	35
68	Structure of GaN(0001): The laterally contracted Ga bilayer model. <i>Physical Review B</i> , 2000 , 61, 9932-99	353	296
67	Spontaneous formation of indium-rich nanostructures on InGaN(0001) surfaces. <i>Physical Review Letters</i> , 2000 , 85, 1902-5	7.4	91
66	Arsenic impurities in GaN. Applied Physics Letters, 2000, 76, 1009-1011	3.4	52
65	Indium incorporation and surface segregation during InGaN growth by molecular beam epitaxy. Materials Research Society Symposia Proceedings, 2000, 639, 261		

(1998-2000)

64	Guided bone regeneration with titanium membranes: a clinical study. <i>British Journal of Oral and Maxillofacial Surgery</i> , 2000 , 38, 312-5	1.4	80
63	Doping of AlGaN Alloys. MRS Internet Journal of Nitride Semiconductor Research, 1999 , 4, 890-901		20
62	Theory of Hydrogen in GaN. Semiconductors and Semimetals, 1999, 479-502	0.6	17
61	Indium-induced changes in GaN(0001) surface morphology. <i>Physical Review B</i> , 1999 , 60, R8473-R8476	3.3	140
60	Surface energetics, pit formation, and chemical ordering in InGaN alloys. <i>Applied Physics Letters</i> , 1999 , 74, 2319-2321	3.4	213
59	Doping of AlxGa1\(\mathbb{R}\)N alloys. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1999 , 59, 253-257	3.1	31
58	The adsorption of oxygen at GaN surfaces. <i>Applied Physics Letters</i> , 1999 , 74, 1695-1697	3.4	197
57	GaN(0001) surface structures studied using scanning tunneling microscopy and first-principles total energy calculations. <i>Surface Science</i> , 1999 , 423, 70-84	1.8	113
56	Chemical trends for acceptor impurities in GaN. Journal of Applied Physics, 1999, 85, 3003-3005	2.5	84
55	Modeling of Structural and Elastic Properties of InxGa1N Alloys. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 584, 215		1
54	Defects and Defect Reactions in Semiconductor Nitrides. <i>Acta Physica Polonica A</i> , 1999 , 96, 613-627	0.6	20
53	Bone condensing in the placement of endosteal palatal implants: a case report. <i>International Journal of Oral and Maxillofacial Implants</i> , 1999 , 14, 849-52	2.8	12
52	Scanning tunneling microscopy of the GaN(000Applied Physics A: Materials Science and Processing, 1998 , 66, S947-S951	2.6	28
51	Theory of doping and defects in III№ nitrides. <i>Journal of Crystal Growth</i> , 1998 , 189-190, 505-510	1.6	175
50	Adatom diffusion at GaN (0001) and (0001) surfaces. Applied Physics Letters, 1998, 73, 487-489	3.4	400
49	Reconstructions of GaN(0001) and (0001) surfaces: Ga-rich metallic structures. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 1998 , 16, 2242		211
48	Determination of wurtzite GaN lattice polarity based on surface reconstruction. <i>Applied Physics Letters</i> , 1998 , 72, 2114-2116	3.4	286
47	Electronic and structural properties of vacancies on and below the GaP(110) surface. <i>Physical Review B</i> , 1998 , 58, 1392-1400	3.3	42

46	Wurtzite GaN surface structures studied by scanning tunneling microscopy and reflection high energy electron diffraction. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1998 , 16, 1641-1645	2.9	58
45	Possibility of a Mott-Hubbard ground state for the SiC(0001) surface. <i>Physical Review B</i> , 1998 , 57, R4230) ₃ R;423	32 ₇₄
44	Clean and As-Covered Zinc-Blende GaN (001) Surfaces: Novel Surface Structures and Surfactant Behavior. <i>Physical Review Letters</i> , 1998 , 80, 3097-3100	7.4	92
43	Doping of AlGaN Alloys. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 537, 1		4
42	Surface Structures, Surfactants and Diffusion at Cubic and Wurtzite GaN. MRS Internet Journal of Nitride Semiconductor Research, 1998, 3, 1		38
41	Energetics of H and NH2 on GaN(101½) and implications for the origin of nanopipe defects. <i>Physical Review B</i> , 1997 , 56, R4325-R4328	3.3	88
40	Defects and Doping in III-V Nitrides. <i>Materials Science Forum</i> , 1997 , 258-263, 19-26	0.4	7
39	Scanning tunneling microscopy observation of surface reconstruction of GaN on sapphire and 6H-SiC. <i>Materials Research Society Symposia Proceedings</i> , 1997 , 482, 428		1
38	Atomic structure and stability of AlN(0001) and (000 1) surfaces. <i>Physical Review B</i> , 1997 , 55, 13878-138	83 33	120
37	Small valence-band offsets at GaN/InGaN heterojunctions. <i>Applied Physics Letters</i> , 1997 , 70, 2577-2579	3.4	122
36	Reconstructions of the GaN(0001[) Surface. <i>Physical Review Letters</i> , 1997 , 79, 3934-3937	7.4	309
35	Density-functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics. <i>Computer Physics Communications</i> , 1997 , 107, 187-2	2 ¹ 2 ²	628
34	Role of hydrogen in doping of GaN. <i>Applied Physics Letters</i> , 1996 , 68, 1829-1831	3.4	278
33	Gallium vacancies and the yellow luminescence in GaN. <i>Applied Physics Letters</i> , 1996 , 69, 503-505	3.4	963
32	Role of Hydrogen and Hydrogen Complexes in Doping of GaN. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 423, 619		11
31	Theory of GaN(101-bar0) and (112-bar0) surfaces. <i>Physical Review B</i> , 1996 , 53, R10477-R10480	3.3	309
30	Theory of Point Defects and Interfaces. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 449, 861		19
29	Energetics of AlN Epitaxial Wetting Layers on SiC (0001). <i>Materials Research Society Symposia Proceedings</i> , 1996 , 449, 899		1

Native defects and impurities in GaN. Festk@perprobleme, 1996, 25-44 28 43 Inversion Domain and Stacking Mismatch Boundaries in GaN. Physical Review Letters, 1996, 77, 103-106 7.4 27 217 Energetics of AlN thin films and the implications for epitaxial growth on SiC. Physical Review B, 26 18 3.3 1996, 54, R17351-R17354 Theory of the adatom-induced reconstruction of the SiC(0001) sqrt 3 x sqrt 3 surface. Physical 25 3.3 152 Review B, 1995, 52, 17001-17004 Hydrogen interactions with self-interstitials in silicon. Physical Review B, 1995, 52, 14320-14323 36 24 3.3 Electronic structure and phase stability of GaAs1-xNx alloys. Physical Review B, 1995, 51, 10568-10571 3.3 23 251 Hydrogen in GaN: Novel aspects of a common impurity. Physical Review Letters, 1995, 75, 4452-4455 22 7.4 390 Phase Stability and Electronic Structure of GaAs1Nx Alloys. Materials Research Society Symposia 3 *Proceedings*, **1995**, 379, 3 Tight-binding initialization for generating high-quality initial wave functions: application to defects 20 5 and impurities in GaN. Materials Research Society Symposia Proceedings, 1995, 408, 43 Theory of Defects in Wide-Band-Gap Semiconductors. Materials Research Society Symposia 19 Proceedings, 1995, 378, 467 Theory of Point Defects and Complexes in GaN. Materials Research Society Symposia Proceedings, 18 60 **1995**, 395, 645 Chemical trends and bonding mechanisms for isloated adsorbates on Al(111). Physical Review B, 17 3.3 73 **1994**, 49, 17242-17252 16 Atomic and electronic structure of the GaAs/ZnSe(001) interface. Physical Review B, 1994, 50, 8616-86283.3 79 Alkali-metal adsorbates on Aluminum (111): The interplay and competition of adsorbates-substrate 6.6 15 and adsorbate-adsorbate interactions. Progress in Surface Science, 1994, 46, 295-304 Alkali-metal adsorption on Al(111) and Al(100). Surface Science, 1994, 307-309, 8-15 1.8 61 14 Atomic geometry and electronic structure of native defects in GaN. Physical Review B, 1994, 50, 8067-803,0, 692 13 Electronic structure of R30tha and -K on Al(111): Comparison of Bormalland substitutional 1.8 12 17 adsorption sites. Surface Science, 1993, 287-288, 559-563 Theory of adsorption and desorption in high electric fields. Surface Science, 1993, 287-288, 572-576 1.8 11 41

10	A step from surface fiction towards surface science. Journal of Physics Condensed Matter, 1993, 5, A91-	-A 9 :8	9
9	Mechanisms of island formation of alkali-metal adsorbates on Al(111). <i>Physical Review Letters</i> , 1993 , 71, 577-580	7.4	126
8	Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). <i>Physical Review B</i> , 1992 , 46, 16067-16080	3.3	1987
7	Self-consistent tight-binding total energy calculations: Application to GaAs/Si and ZnSe/GaAs (100) interfaces. <i>Superlattices and Microstructures</i> , 1992 , 11, 393-398	2.8	3
6	Atomic structure of (100) ZnSe/GaAs interfaces. Superlattices and Microstructures, 1992, 12, 225-230	2.8	1
5	Unusual chemisorption geometry of Na on Al(111). <i>Physical Review Letters</i> , 1991 , 67, 2163-2166	7.4	180
4	Tight-binding calculations of total energies of macroscopic polar electron-core systems: Application to IIIVI compounds. <i>Journal of Crystal Growth</i> , 1990 , 101, 332-336	1.6	3
3	Diamagnetic Shift of Bielectrons in Bil3. <i>Physica Status Solidi (B): Basic Research</i> , 1988 , 145, 579-584	1.3	2
2	Workflow Engineering in Materials Design within the BATTERY 2030 + Project. <i>Advanced Energy Materials</i> ,2102638	21.8	4
1	Defect phases Thermodynamics and impact on material properties. <i>International Materials Reviews</i> ,1-29	16.1	1