
## **Roger Stromberg**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6177140/publications.pdf Version: 2024-02-01



POCED STROMBERC

| #  | Article                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Nucleoside H-phosphonates. III. Chemical synthesis of oligodeoxyribonucleotides by the hydrogenphosphonate approach. Tetrahedron Letters, 1986, 27, 4051-4054.                                                                                                                  | 1.4  | 179       |
| 2  | Nucleoside H-phosphonates. IV. Automated solid phase synthesis of oligoribonucleotides by the hydrogenphosphonate approach. Tetrahedron Letters, 1986, 27, 4055-4058.                                                                                                           | 1.4  | 111       |
| 3  | Removal of f-butyldimethylsilyl protection in RNA-synthesis. Triethylamine trihydrofluoride (TEA, 3HF)<br>is a more reliable alternative to tetrabutylammonium fluoride (TBAF). Nucleic Acids Research, 1994, 22,<br>2430-2431.                                                 | 14.5 | 110       |
| 4  | Biological Activity and Biotechnological Aspects of Peptide Nucleic Acid. Advances in Genetics, 2006, 56, 1-51.                                                                                                                                                                 | 1.8  | 97        |
| 5  | Amyloid-β-Induced Action Potential Desynchronization and Degradation of Hippocampal Gamma<br>Oscillations Is Prevented by Interference with Peptide Conformation Change and Aggregation. Journal<br>of Neuroscience, 2014, 34, 11416-11425.                                     | 3.6  | 91        |
| 6  | Studies on the t-butyldimethylsilyl group as 2'-O-protection in oligoribonucleotide synthesis via the<br>H-phosphonate approach. Nucleic Acids Research, 1988, 16, 9285-9298.                                                                                                   | 14.5 | 81        |
| 7  | Phenylbutyrate Counteracts Shigella Mediated Downregulation of Cathelicidin in Rabbit Lung and<br>Intestinal Epithelia: A Potential Therapeutic Strategy. PLoS ONE, 2011, 6, e20637.                                                                                            | 2.5  | 78        |
| 8  | Lactose in Human Breast Milk an Inducer of Innate Immunity with Implications for a Role in Intestinal Homeostasis. PLoS ONE, 2013, 8, e53876.                                                                                                                                   | 2.5  | 76        |
| 9  | Compelling evidence for a stepwise mechanism of the alkaline cyclisation of uridine 3′-phosphate esters. Organic and Biomolecular Chemistry, 2004, 2, 2165-2167.                                                                                                                | 2.8  | 65        |
| 10 | Synthesis and Properties of RNA Analogues Having Amides as Interuridine Linkages at Selected Positions. Journal of the American Chemical Society, 2003, 125, 12125-12136.                                                                                                       | 13.7 | 62        |
| 11 | PNAzymes That Are Artificial RNA Restriction Enzymes. Journal of the American Chemical Society, 2010, 132, 8984-8990.                                                                                                                                                           | 13.7 | 61        |
| 12 | Hydrolytic Reactions of the Diastereomeric Phosphoromonothioate Analogs of Uridylyl(3',5')uridine:<br>Kinetics and Mechanisms for Desulfurization, Phosphoester Hydrolysis, and Transesterification to<br>the 2',5'-Isomers. Journal of Organic Chemistry, 1995, 60, 5620-5627. | 3.2  | 59        |
| 13 | The mechanism of the metal ion promoted cleavage of RNA phosphodiester bonds involves a general acid catalysis by the metal aquo ion on the departure of the leaving group. Journal of the Chemical Society Perkin Transactions II, 1999, , 1619-1626.                          | 0.9  | 52        |
| 14 | Oligonucleotide based artificial nuclease (OBAN) systems. Bulge size dependence and positioning of catalytic group in cleavage of RNA-bulges. Organic and Biomolecular Chemistry, 2003, 1, 1461-1465.                                                                           | 2.8  | 48        |
| 15 | Synthesis of new OBAN's and further studies on positioning of the catalytic group. Organic and<br>Biomolecular Chemistry, 2004, 2, 1901-1907.                                                                                                                                   | 2.8  | 43        |
| 16 | An approach towards the synthesis of oligomers containing a<br>N-2-hydroxyethyl-aminomethylphosphonate backbone: A novel PNA analogue. Tetrahedron Letters,<br>1996, 37, 7857-7860.                                                                                             | 1.4  | 42        |
| 17 | A Method for Solid-Phase Synthesis of Oligonucleotide 5â€~-Peptide-Conjugates Using Acid-Labile α-Amino<br>Protections. Journal of the American Chemical Society, 2004, 126, 14029-14035.                                                                                       | 13.7 | 41        |
| 18 | Entinostat up-regulates the CAMP gene encoding LL-37 via activation of STAT3 and HIF-1α transcription factors. Scientific Reports, 2016, 6, 33274.                                                                                                                              | 3.3  | 38        |

| #  | Article                                                                                                                                                                                              | IF                 | CITATIONS    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|
| 19 | PNA based artificial nucleases displaying catalysis with turnover in the cleavage of a leukemia related RNA model. Organic and Biomolecular Chemistry, 2008, 6, 3837.                                | 2.8                | 37           |
| 20 | An activated triple bond linker enables â€~click' attachment of peptides to oligonucleotides on solid support. Nucleic Acids Research, 2011, 39, 9047-9059.                                          | 14.5               | 34           |
| 21 | Intramolecular transesterification in thiophosphate-analogues of an RNA-dimer Tetrahedron Letters,<br>1991, 32, 3723-3726.                                                                           | 1.4                | 33           |
| 22 | Stereospecific oxidation and oxidative coupling of H-phosphonate and H-phosphonothioate diesters.<br>Tetrahedron Letters, 1992, 33, 3185-3188.                                                       | 1.4                | 31           |
| 23 | Solid support synthesis of all-Rp-oligo(ribonucleoside phosphorothioate)s. Nucleic Acids Research,<br>1996, 24, 3811-3820.                                                                           | 14.5               | 29           |
| 24 | A synthetic snRNA m3G-CAP enhances nuclear delivery of exogenous proteins and nucleic acids.<br>Nucleic Acids Research, 2009, 37, 1925-1935.                                                         | 14.5               | 29           |
| 25 | Mechanism of RNase T1: concerted triester-like phosphoryl transfer via a catalytic three-centered hydrogen bond. Chemistry and Biology, 2000, 7, 651-658.                                            | 6.0                | 28           |
| 26 | Boosting innate immunity: Development and validation of a cell-based screening assay to identify LL-37 inducers. Innate Immunity, 2014, 20, 364-376.                                                 | 2.4                | 28           |
| 27 | Base Catalysis and Leaving Group Dependence in Intramolecular Alcoholysis of Uridine 3â€~-(Aryl) Tj ETQq1 1 0.7                                                                                      | '84314 rg <br>13.7 | BT /Qverlock |
| 28 | Sequence-specific RNA cleavage by PNA conjugates of the metal-free artificial ribonuclease tris(2-aminobenzimidazole). Beilstein Journal of Organic Chemistry, 2015, 11, 493-498.                    | 2.2                | 26           |
| 29 | Unfolding of the Amyloid β-Peptide Central Helix: Mechanistic Insights from Molecular Dynamics<br>Simulations. PLoS ONE, 2011, 6, e17587.                                                            | 2.5                | 26           |
| 30 | Acidity of Secondary Hydroxyls in ATP and Adenosine Analogues and the Question of a 2â€~,3â€~-Hydrogen<br>Bond in Ribonucleosides. Journal of the American Chemical Society, 2004, 126, 14710-14711. | 13.7               | 24           |
| 31 | <sup>19</sup> Fâ€NMR Spectroscopic Analysis of the Binding Modes in Tripleâ€Helical Peptide Nucleic Acid<br>(PNA)/MicroRNA Complexes. Chemistry - A European Journal, 2017, 23, 7113-7124.           | 3.3                | 24           |
| 32 | Synthesis and Properties of Oligoribonucleotide Analogs Having Formacetal Internucleoside Linkages.<br>Journal of Organic Chemistry, 1997, 62, 1846-1850.                                            | 3.2                | 23           |
| 33 | Analysis of the Stability and Flexibility of RNA Complexes Containing Bulge Loops of Different Sizes.<br>Journal of Biomolecular Structure and Dynamics, 2008, 26, 163-173.                          | 3.5                | 21           |
| 34 | Innovative developments and emerging technologies in RNA therapeutics. RNA Biology, 2022, 19, 313-332.                                                                                               | 3.1                | 19           |
| 35 | Nuclease resistant oligonucleotides with cell penetrating properties. Chemical Communications, 2015, 51, 4044-4047.                                                                                  | 4.1                | 18           |
| 36 | Capping of oligonucleotides with "clickable―m3G-CAPs. RSC Advances, 2012, 2, 12949.                                                                                                                  | 3.6                | 17           |

3

| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effects of Ligands on Unfolding of the Amyloid β-Peptide Central Helix: Mechanistic Insights from<br>Molecular Dynamics Simulations. PLoS ONE, 2012, 7, e30510.                                                                                          | 2.5 | 17        |
| 38 | Treatment with Entinostat Heals Experimental Cholera by Affecting Physical and Chemical Barrier Functions of Intestinal Epithelia. Antimicrobial Agents and Chemotherapy, 2017, 61, .                                                                    | 3.2 | 16        |
| 39 | Cationic Peptides that Increase the Thermal Stabilities of 2′â€∢i>Oâ€MeRNA/RNA Duplexes but Do Not<br>Affect DNA/DNA Melting. ChemBioChem, 2010, 11, 2606-2612.                                                                                          | 2.6 | 15        |
| 40 | A METHOD FOR SYNTHESIS OF AN ARTIFICIAL RIBONUCLEASE. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 1385-1388.                                                                                                                                   | 1.1 | 14        |
| 41 | RNA Cleavage by 2,9-Diamino-1,10-Phenanthroline PNA Conjugates. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1479-1483.                                                                                                                         | 1.1 | 14        |
| 42 | Synthesis of estradiol backbone mimics via the Stille reaction using copper(II) oxide as co-reagent.<br>Tetrahedron Letters, 2011, 52, 209-211.                                                                                                          | 1.4 | 14        |
| 43 | Zinc Ion-Dependent Peptide Nucleic Acid-Based Artificial Enzyme that Cleaves RNA—Bulge Size and Sequence Dependence. Molecules, 2017, 22, 1856.                                                                                                          | 3.8 | 14        |
| 44 | Efficient Conjugation to Phosphorothioate Oligonucleotides by Cu-Catalyzed Huisgen 1,3-Dipolar<br>Cycloaddition. Bioconjugate Chemistry, 2019, 30, 1622-1628.                                                                                            | 3.6 | 14        |
| 45 | Studies on Ribonucleoside Hydrogenphosphonates. Effect of a Vicinal Hydroxyl Function on the<br>Stability of H-Phosphonate Diester Bond. Nucleosides & Nucleotides, 1988, 7, 321-337.                                                                    | 0.5 | 13        |
| 46 | Stereoselectivity in the Synthesis of 3′-Deoxy-3′-C-(hydroxymethyl)uridines by Hydroboration and<br>Conversion into a Building Block for Various 3′-Deoxy-3′-C-(methylene)uridine Analogues. European<br>Journal of Organic Chemistry, 2001, 2001, 4305. | 2.4 | 12        |
| 47 | Oligoribonucleotide Analogues Containing a Mixed Backbone of Phosphodiester and Formacetal<br>Internucleoside Linkages, Together with Vicinal 2′-O-Methyl Groups. ChemBioChem, 2007, 8, 537-545.                                                         | 2.6 | 12        |
| 48 | Investigation on Condensing Agents for Phosphinate Ester Formation with Nucleoside 5′â€Hydroxyl<br>Functions. European Journal of Organic Chemistry, 2008, 2008, 1705-1714.                                                                              | 2.4 | 12        |
| 49 | Novel aroylated phenylenediamine compounds enhance antimicrobial defense and maintain airway epithelial barrier integrity. Scientific Reports, 2019, 9, 7114.                                                                                            | 3.3 | 12        |
| 50 | An engineered ribonuclease preferring phosphorothioate RNA. Nature Structural Biology, 1998, 5,<br>365-368.                                                                                                                                              | 9.7 | 11        |
| 51 | Stability Studies of N-Acylimidazoles. European Journal of Organic Chemistry, 2002, 2002, 2633.                                                                                                                                                          | 2.4 | 11        |
| 52 | Solid phase synthesis, radiolabeling and biological evaluation of a <sup>99m</sup> Tc-labeled<br>α <sub>V</sub> β <sub>3</sub> tripeptide (RGD) conjugated to DOTA as a tumor imaging agent. Cancer<br>Biology and Therapy, 2011, 11, 893-901.           | 3.4 | 11        |
| 53 | Studies on the Synthesis of Oligonucleotides <i>via</i> the Hydrogenphosphonate Approach.<br>Nucleosides & Nucleotides, 1987, 6, 283-286.                                                                                                                | 0.5 | 10        |
| 54 | Synthesis and evaluation of stability of m3C-CAP analogues in serum-supplemented medium and cytosolic extract. Bioorganic and Medicinal Chemistry, 2013, 21, 7921-7928.                                                                                  | 3.0 | 10        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Enabling Multiple Conjugation to Oligonucleotides Using "Click Cycles― Bioconjugate Chemistry,<br>2016, 27, 2620-2628.                                                                                                 | 3.6 | 10        |
| 56 | Studies on the reaction of nucleoside phosphorodiesters with aryl sulfonyl chlorides. Tetrahedron<br>Letters, 1986, 27, 2665-2666.                                                                                     | 1.4 | 9         |
| 57 | Studies on the Oxidation of Nucleoside Hydrogenphosphonates. Nucleosides & Nucleotides, 1987, 6, 429-432.                                                                                                              | 0.5 | 9         |
| 58 | Specific metal-ion binding sites in a model of the P4-P6 triple-helical domain of a group I intron. Rna, 2001, 7, 1115-1125.                                                                                           | 3.5 | 9         |
| 59 | Characterization of an RNA bulge structure by Fourier transform infrared spectroscopy. Biochemical and Biophysical Research Communications, 2004, 324, 634-639.                                                        | 2.1 | 9         |
| 60 | Solid Support Post-Conjugation of Amino Acids and a Phenanthroline Derivative to a Central Position in Peptide Nucleic Acids. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1485-1489.                         | 1.1 | 9         |
| 61 | Studies on Tris(2-aminobenzimidazole)-PNA Based Artificial Nucleases: A Comparison of Two Analytical<br>Techniques. Bioconjugate Chemistry, 2015, 26, 2514-2519.                                                       | 3.6 | 9         |
| 62 | Clickable trimethylguanosine cap analogs modified within the triphosphate bridge: synthesis, conjugation to RNA and susceptibility to degradation. RSC Advances, 2016, 6, 8317-8328.                                   | 3.6 | 9         |
| 63 | Further Probing of Cu2+-Dependent PNAzymes Acting as Artificial RNA Restriction Enzymes. Molecules, 2019, 24, 672.                                                                                                     | 3.8 | 9         |
| 64 | RNA-synthesis using H-phosphonates. Synchronizing 2'-OH and N-protection. Collection of Czechoslovak Chemical Communications, 1993, 58, 236-237.                                                                       | 1.0 | 9         |
| 65 | Stabilisation of RNA Bulges by Oligonucleotide Complements Containing an Adenosine Analogue.<br>ChemBioChem, 2003, 4, 1194-1200.                                                                                       | 2.6 | 8         |
| 66 | Facile Determination of the Protecting Group Location ofNim-Protected Histidine Derivatives by1Hâ^15N<br>Heteronuclear Correlation NMR. Journal of Organic Chemistry, 2003, 68, 7521-7523.                             | 3.2 | 8         |
| 67 | Side Reactions in the H-Phosphonate Approach to Oligonucleotide Synthesis: A Kinetic Investigation<br>on Bisacylphosphite Formation and 5′-O-Acylation. Nucleosides, Nucleotides and Nucleic Acids, 2003,<br>22, 1-12. | 1.1 | 8         |
| 68 | Synthesis of fluorescent d-amino acids with 4-acetamidobiphenyl and<br>4-N,N-dimethylamino-1,8-naphthalimido containing side chains. Tetrahedron Letters, 2015, 56, 4780-4783.                                         | 1.4 | 8         |
| 69 | Sequence-selective DNA recognition and enhanced cellular up-take by peptide–steroid conjugates.<br>Chemical Communications, 2015, 51, 17552-17555.                                                                     | 4.1 | 8         |
| 70 | New Alkyne and Amine Linkers for Versatile Multiple Conjugation of Oligonucleotides. ACS Omega, 2021, 6, 579-593.                                                                                                      | 3.5 | 8         |
| 71 | Synthesis and Stability of a 2′â€ <i>O</i> â€{ <i>N</i> â€{Aminoethyl)carbamoyl]methyladenosine ontaining<br>Dinucleotide. European Journal of Organic Chemistry, 2013, 2013, 7184-7192.                               | 2.4 | 7         |
| 72 | An Efficient and Facile Methodology for Bromination of Pyrimidine and Purine Nucleosides with<br>Sodium Monobromoisocyanurate (SMBI). Molecules, 2013, 18, 12740-12750.                                                | 3.8 | 7         |

| #  | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A Versatile and Convenient Synthesis of <sup>34</sup> Sâ€Labeled Phosphorothioate Oligonucleotides.<br>ChemBioChem, 2018, 19, 2114-2119.                                                                                                                                | 2.6 | 7         |
| 74 | Amyloid-β Peptide Targeting Peptidomimetics for Prevention of Neurotoxicity. ACS Chemical Neuroscience, 2019, 10, 1462-1477.                                                                                                                                            | 3.5 | 7         |
| 75 | The Mechanism of Cleavage of RNA Phosphodiesters by a Gold Nanoparticle Nanozyme. Chemistry - A<br>European Journal, 2021, 27, 8143-8148.                                                                                                                               | 3.3 | 7         |
| 76 | Zn <sup>2+</sup> -Dependent peptide nucleic acid-based artificial ribonucleases with unprecedented efficiency and specificity. Chemical Communications, 2021, 57, 10911-10914.                                                                                          | 4.1 | 7         |
| 77 | STUDIES IN OLIGONUCLEOTIDE-BASED ARTIFICIAL NUCLEASE SYSTEMS. INTRAMOLECULAR COPPER (II)<br>COMPLEX FORMATION IN AN OLIGONUCLEOTIDE BIS-PHENANTHROLINE CONJUGATE. Nucleosides,<br>Nucleotides and Nucleic Acids, 2005, 24, 901-905.                                     | 1.1 | 6         |
| 78 | Synthesis and evaluation of antineurotoxicity properties of an amyloid-β peptide targeting ligand containing a triamino acid. Organic and Biomolecular Chemistry, 2014, 12, 6684-6693.                                                                                  | 2.8 | 6         |
| 79 | Clamping of RNA with PNA enables targeting of microRNA. Organic and Biomolecular Chemistry, 2016, 14, 5210-5213.                                                                                                                                                        | 2.8 | 6         |
| 80 | Facile functionalization of peptide nucleic acids (PNAs) for antisense and single nucleotide polymorphism detection. Organic and Biomolecular Chemistry, 2017, 15, 6710-6714.                                                                                           | 2.8 | 6         |
| 81 | 2′-Amino-2′-deoxyguanosine is a cofactor for self-splicing in group I catalytic RNA. Biochemical and<br>Biophysical Research Communications, 1992, 183, 842-847.                                                                                                        | 2.1 | 5         |
| 82 | Reactions of 3′-C-Halomethyl and 3′-C-Sulfonylmethyl Uridines with Phosphinic Acid Derivatives â^'<br>Synthesis of Building Blocks for Oligonucleotides Containing 3′-C-Methylenephosphonate Linkages.<br>European Journal of Organic Chemistry, 2002, 2002, 1509-1515. | 2.4 | 5         |
| 83 | EVALUATION OF SEVERAL ECONOMICAL COMPUTATIONAL METHODS FOR GEOMETRY OPTIMISATION OF PHOSPHORUS ACID DERIVATIVES. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 1381-1384.                                                                                       | 1.1 | 4         |
| 84 | Comparison of Some Computational Methods for Geometry Optimisation of Phosphorus Acid Derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 2711-2724.                                                                                       | 1.6 | 4         |
| 85 | Synthesis of 8-aminoadenosine 5′-(aminoalkyl phosphates), analogues of aminoacyl adenylates.<br>Bioorganic and Medicinal Chemistry, 2006, 14, 2653-2659.                                                                                                                | 3.0 | 4         |
| 86 | Synthesis and biological evaluation of modified laminin peptide (N2S2-KDP) with enhanced affinity for neuronal growth and targeted molecular imaging (SPECT). Bioorganic Chemistry, 2021, 107, 104516.                                                                  | 4.1 | 4         |
| 87 | Synthesis of nucleoside methylphosphonates and nucleoside methylthiophosphonates via phosphinate intermediates. Collection of Czechoslovak Chemical Communications, 1990, 55, 145-148.                                                                                  | 1.0 | 4         |
| 88 | NanoSIMS Imaging Reveals the Impact of Ligand-ASO Conjugate Stability on ASO Subcellular<br>Distribution. Pharmaceutics, 2022, 14, 463.                                                                                                                                 | 4.5 | 4         |
| 89 | 2′- <i>O</i> -( <i>N</i> -(Aminoethyl)carbamoyl)methyl Modification Allows for Lower Phosphorothioate<br>Content in Splice-Switching Oligonucleotides with Retained Activity. Nucleic Acid Therapeutics, 2022, ,                                                        | 3.6 | 4         |
| 90 | Chemical Synthesis of RNA-Fragment Analogues That Have Phosphorothioate Linkages of Identical<br>Configuration. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 879-881.                                                                                          | 1.1 | 3         |

| #   | Article                                                                                                                                                                                                                         | IF    | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 91  | Synthesis of RNA Fragments Using the H-Phosphonate Method and 2'-(2'-Chlorobenzoyl) Protection.<br>Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 855-857.                                                               | 1.1   | 3         |
| 92  | Synthesis of Nucleic Acid Fragments with 3′-Deoxy-3′-C-Methylenephosphonate Linkages â^' Oxidation Of<br>Nucleoside 3′-Deoxy-3′-C-Methylenephosphinate Esters. European Journal of Organic Chemistry, 2002,<br>2002, 3140-3144. | 2.4   | 3         |
| 93  | Application of Nim-2,6-Dimethoxybenzoyl Histidine in Solid-Phase Peptide Synthesis. European Journal of Organic Chemistry, 2003, 2003, 2454-2461.                                                                               | 2.4   | 3         |
| 94  | Synthesis of 2′-Deuterio and 3′-Deuterio Cytidine 5′-Diphosphate. Nucleosides, Nucleotides and Nucleic<br>Acids, 2003, 22, 1657-1659.                                                                                           | 1.1   | 3         |
| 95  | Stability of a 2′â€ <i>O</i> â€(Carbamoylmethyl)adenosineâ€Containing Dinucleotide. European Journal of<br>Organic Chemistry, 2012, 2012, 539-543.                                                                              | 2.4   | 3         |
| 96  | Influence of sequence variation on the RNA cleavage activity of<br>Zn <sup>2+</sup> -dimethyl-dppz-PNA-based artificial enzymes. RSC Advances, 2022, 12, 5398-5406.                                                             | 3.6   | 3         |
| 97  | Activation of Nucleoside Hydrogenphosphonates by Use of Aryl Sulfonyl Chlorides. Nucleosides & Nucleotides, 1987, 6, 425-427.                                                                                                   | 0.5   | 2         |
| 98  | RNA-Synthesis Using the H-Phosphonate Approach and an Improved Protecting Group Strategy.<br>Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 883-887.                                                                     | 1.1   | 2         |
| 99  | Synthesis of Oligoarabinonucleotides Using H-Phosphonates. Nucleosides, Nucleotides and Nucleic<br>Acids, 1995, 14, 851-853.                                                                                                    | 1.1   | 2         |
| 100 | Synthesis of PNA Oligoether Conjugates. Molecules, 2014, 19, 3135-3148.                                                                                                                                                         | 3.8   | 2         |
| 101 | Synthesis of Triamino Acid Building Blocks with Different Lipophilicities. PLoS ONE, 2015, 10, e0124046.                                                                                                                        | 2.5   | 2         |
| 102 | Synthesis and properties of 2'-O-methoxymethyl oligonucleotides. Collection of Czechoslovak Chemical Communications, 1996, 61, 283-286.                                                                                         | 1.0   | 2         |
| 103 | PREPARATION OF $3\hat{a}\in^2$ -C-BRANCHED URIDINE ANALOGUES, SUITABLE FOR CONVERSION INTO FUNCTIONALISED $3\hat{a}\in^2$ -C-METHYLENE DERIVATIVES. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 1389-1392.            | ) 1.1 | 1         |
| 104 | A SOLID SUPPORTED REAGENT FOR INTERNUCLEOSIDE H-PHOSPHONATE LINKAGE FORMATION. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 897-899.                                                                                   | 1.1   | 1         |
| 105 | Diaminopropionic acid lipopeptides: Characterization studies of polyplexes aimed at pDNA delivery.<br>Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5635-5638.                                                          | 2.2   | 1         |
| 106 | N2-tert-Butoxycarbonyl-N5-[N-(9-fluorenylmethyloxycarbonyl)-2-aminoethyl]-(S)-2,5-diaminopentanoic<br>Acid. MolBank, 2014, 2014, M833.                                                                                          | 0.5   | 1         |
| 107 | Facile Access to Bromonucleosides Using Sodium Monobromoisocyanurate (SMBI). Current Protocols<br>in Nucleic Acid Chemistry, 2017, 68, 1.39.1-1.39.9.                                                                           | 0.5   | 1         |
| 108 | Attachment of Peptides to Oligonucleotides on Solid Support Using Copper(I)-Catalyzed Huisgen<br>1,3-Dipolar Cycloaddition. Methods in Molecular Biology, 2019, 2036, 165-171.                                                  | 0.9   | 1         |

| #   | Article                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Copper atalyzed Huisgen 1,3â€Dipolar Cycloaddition Tailored for Phosphorothioate Oligonucleotides.<br>Current Protocols in Nucleic Acid Chemistry, 2020, 80, e102. | 0.5 | 1         |
| 110 | A Study on Synthesis and Upscaling of 2′-O-AECM-5-methyl Pyrimidine Phosphoramidites for<br>Oligonucleotide Synthesis. Molecules, 2021, 26, 6927.                  | 3.8 | 1         |
| 111 | 34S-SIL of PCSK9-Active Oligonucleotide as Tools for Accurate Quantification by Mass Spectrometry.<br>Nucleic Acid Therapeutics, 2021, 31, 375-381.                | 3.6 | Ο         |
| 112 | Hydrolytic stability of nucleoside H-phosphonate and H-phosphonothioate diesters. Collection of<br>Czechoslovak Chemical Communications, 1993, 58, 79-81.          | 1.0 | 0         |