Lian-Gang Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6177012/publications.pdf Version: 2024-02-01

LIAN-CANE XIAO

#	Article	IF	CITATIONS
1	High performance sky-blue perovskite light-emitting diodes enabled by a bifunctional phosphate molecule. Journal of Alloys and Compounds, 2022, 897, 162727.	5.5	5
2	Morphology Evolution Induced by Sequential Annealing Enabling Enhanced Efficiency in All-Small Molecule Solar Cells. ACS Applied Energy Materials, 2021, 4, 4234-4241.	5.1	10
3	Small molecule ternary solar cell with two synergistic electron acceptors for enhanced photovoltaic performance. Organic Electronics, 2021, 93, 106135.	2.6	9
4	Porphyrin Acceptors with Two Perylene Diimide Dimers for Organic Solar Cells. ChemSusChem, 2021, 14, 3614-3621.	6.8	2
5	Highly Efficient Ternary Solar Cells with Efficient Förster Resonance Energy Transfer for Simultaneously Enhanced Photovoltaic Parameters. Advanced Functional Materials, 2021, 31, 2105304.	14.9	30
6	Fabrication of Dexamethasone-Loaded Dual-Metal–Organic Frameworks on Polyetheretherketone Implants with Bacteriostasis and Angiogenesis Properties for Promoting Bone Regeneration. ACS Applied Materials & Interfaces, 2021, 13, 50836-50850.	8.0	42
7	Designing hierarchical nanoporous membranes for highly efficient gas adsorption and storage. Science Advances, 2020, 6, .	10.3	41
8	Substitution Effect on Thiobarbituric Acid End Groups for High Open-Circuit Voltage Non-Fullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 41852-41860.	8.0	14
9	Employing a Narrow-Band-Gap Mediator in Ternary Solar Cells for Enhanced Photovoltaic Performance. ACS Applied Materials & Interfaces, 2020, 12, 16387-16393.	8.0	22
10	Improving the efficiencies of small molecule solar cells by solvent vapor annealing to enhance J-aggregation. Journal of Materials Chemistry C, 2019, 7, 9618-9624.	5.5	15
11	High-detectivity panchromatic photodetectors for the near infrared region based on a dimeric porphyrin small molecule. Journal of Materials Chemistry C, 2018, 6, 3341-3345.	5.5	37
12	Dimeric Porphyrin Small Molecules for Efficient Organic Solar Cells with High Photoelectron Response in the Near-Infrared Region. ACS Applied Materials & Interfaces, 2018, 10, 668-675.	8.0	32
13	Multiple Roles of a Non-fullerene Acceptor Contribute Synergistically for High-Efficiency Ternary Organic Photovoltaics. Joule, 2018, 2, 2154-2166.	24.0	85
14	Facile integration of low-cost black phosphorus in solution-processed organic solar cells with improved fill factor and device efficiency. Nano Energy, 2018, 53, 345-353.	16.0	39
15	Conjugated ionic porphyrins as the cathode interlayer materials in organic solar cells. Organic Electronics, 2018, 62, 107-113.	2.6	7
16	A low-bandgap dimeric porphyrin molecule for 10% efficiency solar cells with small photon energy loss. Journal of Materials Chemistry A, 2018, 6, 18469-18478.	10.3	40
17	Modifying the Chemical Structure of a Porphyrin Small Molecule with Benzothiophene Groups for the Reproducible Fabrication of High Performance Solar Cells. ACS Applied Materials & 2017, 9, 7131-7138.	8.0	57
18	Conjugated D–A porphyrin dimers for solution-processed bulk-heterojunction organic solar cells. Chemical Communications, 2017, 53, 5113-5116.	4.1	32

LIAN-GANG XIAO

#	Article	IF	CITATIONS
19	Ternary Solar Cells Based on Two Small Molecule Donors with Same Conjugated Backbone: The Role of Good Miscibility and Hole Relay Process. ACS Applied Materials & Interfaces, 2017, 9, 29917-29923.	8.0	45
20	A visible-near-infrared absorbing A–π ₂ –D–π ₁ –D–π ₂ –A type dimeric-porphyrin donor for high-performance organic solar cells. Journal of Materials Chemistry A, 2017, 5, 25460-25468.	10.3	45
21	Aâ€Ï€â€Dâ€Ï€â€A type Small Molecules Using Ethynylene Linkages for Organic Solar Cells with High Openâ€circu Voltages. Chinese Journal of Chemistry, 2016, 34, 353-358.	it 4.9	8
22	Multiâ€Lengthâ€Scale Morphologies Driven by Mixed Additives in Porphyrinâ€Based Organic Photovoltaics. Advanced Materials, 2016, 28, 4727-4733.	21.0	251
23	Doping ZnO with Water/Alcohol-Soluble Small Molecules as Electron Transport Layers for Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 28225-28230.	8.0	33
24	Facile preparation of small molecules for bulk heterojunction solar cells. RSC Advances, 2016, 6, 59218-59225.	3.6	4
25	New Terthiophene-Conjugated Porphyrin Donors for Highly Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 30176-30183.	8.0	61
26	Research on control scheme of dual-spin projectile with fixed canards. , 2016, , .		1
27	New insight of molecular interaction, crystallization and phase separation in higher performance small molecular solar cells via solvent vapor annealing. Nano Energy, 2016, 30, 639-648.	16.0	77
28	Solution-processed bulk heterojunction solar cells based on porphyrin small molecules with very low energy losses comparable to perovskite solar cells and high quantum efficiencies. Journal of Materials Chemistry C, 2016, 4, 3843-3850.	5.5	37
29	Structural engineering of porphyrin-based small molecules as donors for efficient organic solar cells. Chemical Science, 2016, 7, 4301-4307.	7.4	72
30	A complementary absorption small molecule for efficient ternary organic solar cells. Journal of Materials Chemistry A, 2016, 4, 5288-5293.	10.3	56
31	Porphyrin small molecules containing furan- and selenophene-substituted diketopyrrolopyrrole for bulk heterojunction organic solar cells. Organic Electronics, 2016, 29, 127-134.	2.6	36
32	Aâ€Dâ€A Type Small Molecules Based on Boron Dipyrromethene for Solutionâ€Processed Organic Solar Cells. Chemistry - an Asian Journal, 2015, 10, 1513-1518.	3.3	45
33	Deep Absorbing Porphyrin Small Molecule for High-Performance Organic Solar Cells with Very Low Energy Losses. Journal of the American Chemical Society, 2015, 137, 7282-7285.	13.7	436
34	Solution-processed new porphyrin-based small molecules as electron donors for highly efficient organic photovoltaics. Chemical Communications, 2015, 51, 14439-14442.	4.1	66
35	Highly efficient small molecule solar cells fabricated with non-halogenated solvents. RSC Advances, 2015, 5, 92312-92317.	3.6	12
36	High-Efficiency Small Molecule-Based Bulk-Heterojunction Solar Cells Enhanced by Additive Annealing. ACS Applied Materials & amp; Interfaces, 2015, 7, 21495-21502.	8.0	35

#	Article	IF	CITATIONS
37	Morphology optimization of perovskite films for efficient sky-blue light emitting diodes <i>via</i> a novel green anti-solvent dimethyl carbonate. Journal of Materials Chemistry C, O, , .	5.5	2
38	High-Performance Blue Perovskite Light-Emitting Diodes Enabled by a Sacrificial Agent Maleic Anhydride. Journal of Physical Chemistry C, 0, , .	3.1	6