Vasile-Dan Hodoroaba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6176823/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Customizing New Titanium Dioxide Nanoparticles with Controlled Particle Size and Shape Distribution: A Feasibility Study Toward Reference Materials for Quality Assurance of Nonspherical Nanoparticle Characterization. Advanced Engineering Materials, 2022, 24, 2101347.	1.6	3
2	Generalized Analysis Approach of the Profile Roughness by Electron Microscopy with the Example of Hierarchically Grown Polystyrene–Iron Oxide–Silica Core–Shell–Shell Particles. Advanced Engineering Materials, 2022, 24, .	1.6	5
3	Automation and Standardization—A Coupled Approach towards Reproducible Sample Preparation Protocols for Nanomaterial Analysis. Molecules, 2022, 27, 985.	1.7	0
4	One-Pot Heat-Up Synthesis of ZnSe Magic-Sized Clusters Using Thiol Ligands. Inorganic Chemistry, 2022, 61, 7207-7211.	1.9	4
5	Multilevel effective material approximation for modeling ellipsometric measurements on complex porous thin films. Advanced Optical Technologies, 2022, 11, 137-147.	0.9	0
6	Counting Small Particles in Electron Microscopy Images—Proposal for Rules and Their Application in Practice. Nanomaterials, 2022, 12, 2238.	1.9	8
7	Nanomechanical study of polycarbonate/boehmite nanoparticles/epoxy ternary composite and their interphases. Journal of Applied Polymer Science, 2021, 138, 50231.	1.3	4
8	Preconditioning of AISI 304 stainless steel surfaces in the presence of flavins—Part II: Effect on biofilm formation and microbially influenced corrosion processes. Materials and Corrosion - Werkstoffe Und Korrosion, 2021, 72, 983-994.	0.8	4
9	Workflow towards automated segmentation of agglomerated, non-spherical particles from electron microscopy images using artificial neural networks. Scientific Reports, 2021, 11, 4942.	1.6	19
10	Reliable Surface Analysis Data of Nanomaterials in Support of Risk Assessment Based on Minimum Information Requirements. Nanomaterials, 2021, 11, 639.	1.9	7
11	Surface galvanic formation of Co-OH on Birnessite and its catalytic activity for the oxygen evolution reaction. Journal of Catalysis, 2021, 396, 304-314.	3.1	5
12	Efficient Luminescent Solar Concentrators Based on Environmentally Friendly Cdâ€Free Ternary AIS/ZnS Quantum Dots. Advanced Optical Materials, 2021, 9, 2100587.	3.6	24
13	Carrier Fibers for the Safe Dosage of Nanoparticles in Nanocomposites: Nanomechanical and Thermomechanical Study on Polycarbonate/Boehmite Electrospun Fibers Embedded in Epoxy Resin. Nanomaterials, 2021, 11, 1591.	1.9	1
14	Blueprint for a self-sustained European Centre for service provision in safe and sustainable innovation for nanotechnology. NanoImpact, 2021, 23, 100337.	2.4	5
15	Electrochemical Immunomagnetic Ochratoxin A Sensing: Steps Forward in the Application of 3,3',5,5'â€Tetramethylbenzidine in Amperometric Assays. ChemElectroChem, 2021, 8, 2597-2606.	1.7	9
16	Analysis of the profile roughness of core-shell microparticles by electron microscopy. Microscopy and Microanalysis, 2021, 27, 2002-2004.	0.2	2
17	Toward Determination of the Surface Roughness of Particles from a SEM Image. Microscopy and Microanalysis, 2021, 27, 3302-3305.	0.2	1
18	Nanoparticle size, shape, and concentration measurement at once – two VAMAS pre-standardization projects ready to start. Microscopy and Microanalysis, 2021, 27, 2250-2251.	0.2	1

#	Article	IF	CITATIONS
19	Benchmarking the ACEnano Toolbox for Characterisation of Nanoparticle Size and Concentration by Interlaboratory Comparisons. Molecules, 2021, 26, 5315.	1.7	2
20	Correlative Analysis of the Dimensional Properties of Bipyramidal Titania Nanoparticles by Complementing Electron Microscopy with Other Methods. Nanomaterials, 2021, 11, 3359.	1.9	6
21	Characterization of nanoparticles by scanning electron microscopy. , 2020, , 7-27.		47
22	Characterization of nanomaterials by transmission electron microscopy: Measurement procedures. , 2020, , 29-48.		4
23	Auger electron spectroscopy. , 2020, , 373-395.		8
24	Energy-dispersive X-ray spectroscopy (EDS). , 2020, , 397-417.		21
25	International standards in nanotechnologies. , 2020, , 511-525.		7
26	Volume-specific surface area by gas adsorption analysis with the BET method. , 2020, , 265-294.		11
27	Polyethylene Glycol as Shape and Size Controller for the Hydrothermal Synthesis of SrTiO3 Cubes and Polyhedra. Nanomaterials, 2020, 10, 1892.	1.9	7
28	Organic surface modification and analysis of titania nanoparticles for selfâ€assembly in multiple layers. Surface and Interface Analysis, 2020, 52, 829-834.	0.8	5
29	Assessing Optical and Electrical Properties of Highly Active IrO <i>_x</i> Catalysts for the Electrochemical Oxygen Evolution Reaction via Spectroscopic Ellipsometry. ACS Catalysis, 2020, 10, 14210-14223.	5.5	17
30	Machine learning approach for elucidating and predicting the role of synthesis parameters on the shape and size of TiO2 nanoparticles. Scientific Reports, 2020, 10, 18910.	1.6	26
31	Nano or Not Nano? A Structured Approach for Identifying Nanomaterials According to the European Commission's Definition. Small, 2020, 16, e2002228.	5.2	32
32	A Study on the Analysis of Particle Size Distribution for Bimodal Model Nanoparticles by Electron Microscopy. Microscopy and Microanalysis, 2020, 26, 2282-2283.	0.2	3
33	Analysis of elemental composition of Fe 1â€x Ni x and Si 1â€x Ge x alloy thin films by electron probe microanalysis and microâ€focus Xâ€ray fluorescence. Surface and Interface Analysis, 2020, 52, 929-932.	0.8	2
34	Towards 3D Understanding of Non-spherical Nanoparticles by Transmission Kikuchi Diffraction (TKD) for Improved Particle Size Distribution by Electron Microscopy. Microscopy and Microanalysis, 2020, 26, 260-261.	0.2	0
35	Towards Automated Electron Microscopy Image Segmentation for Nanoparticles of Complex Shape by Convolutional Neural Networks. Microscopy and Microanalysis, 2020, 26, 1188-1189.	0.2	0
36	High-Quality Experimental Data in Electron Microscopy and Microanalysis – What Can, and Should We Jointly Do?. Microscopy and Microanalysis, 2019, 25, 1762-1763.	0.2	0

#	Article	IF	CITATIONS
37	NanoDefiner e-Tool: An Implemented Decision Support Framework for Nanomaterial Identification. Materials, 2019, 12, 3247.	1.3	7
38	Analysis of Elemental Composition of Fe _{1â^'x} Ni _x and Si _{1â^'x} Ge _x Alloy Thin Films by EPMA and μ-XRF. Microscopy and Microanalysis, 2019, 25, 1786-1787.	0.2	1
39	Towards Accurate Analysis of Particle Size Distribution for Non-Spherically Shaped Nanoparticles as Quality Control Materials. Microscopy and Microanalysis, 2019, 25, 2328-2329.	0.2	8
40	Uncertainties in Secondary Fluorescence Correction in EPMA. Microscopy and Microanalysis, 2019, 25, 2360-2361.	0.2	0
41	A technique-driven materials categorisation scheme to support regulatory identification of nanomaterials. Nanoscale Advances, 2019, 1, 781-791.	2.2	11
42	Formic Acid Photoreforming for Hydrogen Production on Shape-Controlled Anatase TiO ₂ Nanoparticles: Assessment of the Role of Fluorides, {101}/{001} Surfaces Ratio, and Platinization. ACS Catalysis, 2019, 9, 6692-6697.	5.5	65
43	Short- and Long-Range Mechanical and Chemical Interphases Caused by Interaction of Boehmite (γ-AlOOH) with Anhydride-Cured Epoxy Resins. Nanomaterials, 2019, 9, 853.	1.9	10
44	Boehmite Nanofillers in Epoxy Oligosiloxane Resins: Influencing the Curing Process by Complex Physical and Chemical Interactions. Materials, 2019, 12, 1513.	1.3	6
45	Photocatalysis of γ–cyclodextrin-functionalised Fe3O4 nanoparticles for degrading Bisphenol A in polluted waters. Environmental Chemistry, 2019, 16, 125.	0.7	7
46	Shape-engineered titanium dioxide nanoparticles (TiO2-NPs): cytotoxicity and genotoxicity in bronchial epithelial cells. Food and Chemical Toxicology, 2019, 127, 89-100.	1.8	59
47	Determining the Thickness and Completeness of the Shell of Polymer Core–Shell Nanoparticles by X-ray Photoelectron Spectroscopy, Secondary Ion Mass Spectrometry, and Transmission Scanning Electron Microscopy. Journal of Physical Chemistry C, 2019, 123, 29765-29775.	1.5	21
48	The effect of boehmite nanoparticles (γâ€AlOOH) on nanomechanical and thermomechanical properties correlated to crosslinking density of epoxy. Polymer, 2019, 164, 174-182.	1.8	39
49	Analytical approach for characterization of morphology and chemistry of a CH ₃ NH ₃ PbI ₃ /TiO ₂ solar cell layered system. Surface and Interface Analysis, 2018, 50, 1234-1238.	0.8	2
50	Functionalized magnetic nanoparticles: Synthesis, characterization, catalytic application and assessment of toxicity. Scientific Reports, 2018, 8, 6278.	1.6	95
51	Morphology and structure of Ti _x O _y nanoparticles generated by femtosecond laser ablation in water. Materials Research Express, 2018, 5, 045015.	0.8	1
52	Singlet oxygen generation potential of porphyrin-sensitized magnetite nanoparticles: Synthesis, characterization and photocatalytic application. Applied Catalysis B: Environmental, 2018, 232, 553-561.	10.8	33
53	Control of functionalization of supports for subsequent assembly of <scp>t</scp> itania nanoparticle films. Surface and Interface Analysis, 2018, 50, 1200-1206.	0.8	5
54	Check of the Performance of EDS Systems Attached to the SEM with the Test Material EDS-TM001/2 and Evaluation Software Package EDS Spectrometer Test -Application, Experiences and Updates. Microscopy and Microanalysis, 2018, 24, 730-731.	0.2	0

#	Article	IF	CITATIONS
55	Analysis of Mesoporous Iridium Oxide Thin Films by the Combined Methodical Approach SEM/EDS/STRATAGem. Microscopy and Microanalysis, 2018, 24, 762-763.	0.2	3
56	Size and Shape Distribution of Bipyramidal TiCh Nanoparticles by Transmission Electron Microscopy - an Inter-Laboratory Comparison. Microscopy and Microanalysis, 2018, 24, 1706-1707.	0.2	1
57	Electron Microscopy and X-Ray Diffraction Analysis of Titanium Oxide Nanoparticles Synthesized by Pulsed Laser Ablation in Liquid. Microscopy and Microanalysis, 2018, 24, 1710-1711.	0.2	0
58	Measurement of Elemental Composition of FeNi and SiGe Thin Films by Electron Probe Microanalysis with Stratagem Software. Microscopy and Microanalysis, 2018, 24, 758-759.	0.2	2
59	Beyond Shape Engineering of TiO ₂ Nanoparticles: Post-Synthesis Treatment Dependence of Surface Hydration, Hydroxylation, Lewis Acidity and Photocatalytic Activity of TiO ₂ Anatase Nanoparticles with Dominant {001} or {101} Facets. ACS Applied Nano Materials, 2018, 1, 5355-5365	2.4	102
60	Zirconium permanent modifiers for graphite furnaces used in absorption spectrometry: understanding their structure and mechanism of action. Journal of Analytical Atomic Spectrometry, 2018, 33, 2034-2042.	1.6	12
61	Ellipsometric porosimetry on pore-controlled TiO2 layers. Applied Surface Science, 2017, 421, 487-493.	3.1	14
62	Evaluation of Electrospray as a Sample Preparation Tool for Electron Microscopic Investigations: Toward Quantitative Evaluation of Nanoparticles. Microscopy and Microanalysis, 2017, 23, 163-172.	0.2	13
63	Size and shape distributions of primary crystallites in titania aggregates. Advanced Powder Technology, 2017, 28, 1647-1659.	2.0	23
64	Influence of agglomeration and aggregation on the photocatalytic activity of TiO 2 nanoparticles. Applied Catalysis B: Environmental, 2017, 216, 80-87.	10.8	170
65	Reliable nanomaterial classification of powders using the volume-specific surface area method. Journal of Nanoparticle Research, 2017, 19, 61.	0.8	70
66	A New Model for Nano-TiO ₂ Crystal Birth and Growth in Hydrothermal Treatment Using an Oriented Attachment Approach. Crystal Growth and Design, 2017, 17, 5640-5651.	1.4	8
67	Analysis of Fluorine Traces in TiO ₂ Nanoplatelets by SEM/EDX, AES and TOF-SIMS. Microscopy and Microanalysis, 2017, 23, 1908-1909.	0.2	1
68	TSEM-based contour analysis as a tool for the quantification of the profile roughness of silica shells on polystyrene core particles. Applied Surface Science, 2017, 426, 446-455.	3.1	14
69	Complementary Methodical Approach for the Analysis of a Perovskite Solar Cell Layered System. Microscopy and Microanalysis, 2017, 23, 1978-1979.	0.2	1
70	Characterization of the inner structure of porous TiO 2 nanoparticle films in dye sensitive solar cells (DSSC) by focused ion beam (FIB) tomography and transmission Kikuchi diffraction (TKD) in the scanning electron microscope (SEM). Materials Characterization, 2017, 131, 39-48.	1.9	13
71	Organic Surface Modification and Analysis of Titania Nanoparticles for Self-Assembly in Multiple Layers. Microscopy and Microanalysis, 2017, 23, 1872-1873.	0.2	0
72	Electrospray as a Sample Preparation Tool for Electron Microscopic Investigations: Toward Quantitative Evaluation of Nanoparticles. Microscopy and Microanalysis, 2017, 23, 1896-1897.	0.2	0

#	Article	IF	CITATIONS
73	Shape engineered TiO ₂ nanoparticles in Caenorhabditis elegans: a Raman imaging based approach to assist tissue-specific toxicological studies. RSC Advances, 2016, 6, 70501-70509.	1.7	14
74	Inâ€depth structural and chemical characterization of engineered TiO ₂ films. Surface and Interface Analysis, 2016, 48, 664-669.	0.8	13
75	How reliably can a material be classified as a nanomaterial? Available particle-sizing techniques at work. Journal of Nanoparticle Research, 2016, 18, 158.	0.8	100
76	Determination of the Effective Detector Area of an Energy-Dispersive X-Ray Spectrometer at the Scanning Electron Microscope Using Experimental and Theoretical X-Ray Emission Yields. Microscopy and Microanalysis, 2016, 22, 1360-1368.	0.2	3
77	Hybrid iron-based core–shell magnetic catalysts for fast degradation of bisphenol A in aqueous systems. Chemical Engineering Journal, 2016, 302, 587-594.	6.6	23
78	New Approach on Quantification of Porosity of Thin Films via Electron-Excited X-ray Spectra. Analytical Chemistry, 2016, 88, 7083-7090.	3.2	41
79	What is the Effective Geometrical Collection Efficiency of Your XEDS Detector? A Routine Procedure Applied in a SEM Laboratory Microscopy and Microanalysis, 2016, 22, 412-413.	0.2	0
80	lonic Liquids as a Reference Material Candidate for the Quick Performance Check of Energy Dispersive X-ray Spectrometers for the Low Energy Range below 1 keV. Analytical Chemistry, 2016, 88, 6967-6970.	3.2	5
81	Removal of pollutants by the new Fenton-like highly active catalysts containing an imidazolium salt and a Schiff base. Applied Catalysis B: Environmental, 2016, 183, 335-342.	10.8	15
82	Assessment of Different Electron Microscopy Techniques for Particle Size Quantification of Potential Nanomaterials. Microscopy and Microanalysis, 2015, 21, 2403-2404.	0.2	4
83	Improved Spatial Resolution of EDX/SEM for the Elemental Analysis of Nanoparticles. Microscopy and Microanalysis, 2015, 21, 1713-1714.	0.2	3
84	Determination of the Effective EDS Detector Area Using Experimental and Theoretical X-ray Emission Yields. Microscopy and Microanalysis, 2015, 21, 1481-1482.	0.2	1
85	What about Ionic Liquids as a "hot―Certified Reference Material Candidate to check Your EDS below 1 keV?. Microscopy and Microanalysis, 2015, 21, 1715-1716.	0.2	1
86	Standardization and Metrology for Efficiency and Reliability in Microbeam Analysis - No pain, no gain. Microscopy and Microanalysis, 2015, 21, 1477-1478.	0.2	0
87	Green Fenton-like magnetic nanocatalysts: Synthesis, characterization and catalytic application. Applied Catalysis B: Environmental, 2015, 176-177, 667-677.	10.8	36
88	Tannic acid- and natural organic matter-coated magnetite as green Fenton-like catalysts for the removal of water pollutants. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	15
89	Catalytical degradation of relevant pollutants from waters using magnetic nanocatalysts. Applied Surface Science, 2015, 352, 42-48.	3.1	21
90	Lateral resolution of nanoscaled images delivered by surface-analytical instruments: application of the BAM-L200 certified reference material and related ISO standards. Analytical and Bioanalytical Chemistry, 2015, 407, 3211-3217.	1.9	23

VASILE-DAN HODOROABA

#	Article	IF	CITATIONS
91	New reference and test materials for the characterization of energy dispersive X-ray spectrometers at scanning electron microscopes. Analytical and Bioanalytical Chemistry, 2015, 407, 3045-3053.	1.9	1
92	Analysis of Nanoscale Wear Particles from Lubricated Steel–Steel Contacts. Tribology Letters, 2015, 58, 1.	1.2	9
93	CCQM pilot study CCQM-P140: quantitative surface analysis of multi-element alloy films. Metrologia, 2015, 52, 08017-08017.	0.6	0
94	Need for Large-Area EDS Detectors for Imaging Nanoparticles in a SEM Operating in Transmission Mode. Microscopy and Microanalysis, 2014, 20, 662-663.	0.2	1
95	Inspection of morphology and elemental imaging of single nanoparticles by highâ€resolution SEM/EDX in transmission mode. Surface and Interface Analysis, 2014, 46, 945-948.	0.8	37
96	Characterization of micro- and nanocapsules for self-healing anti-corrosion coatings by high-resolution SEM with coupled transmission mode and EDX. Analyst, The, 2014, 139, 2004.	1.7	23
97	Accurate determination of small spot X-ray tube spectra by means of direct measurement in a calibrated instrumental setup. Journal of Analytical Atomic Spectrometry, 2014, 29, 458.	1.6	4
98	Morphological and compositional features of blue and yellow pigments used in Portuguese glazed ceramics by SEM/EDX – unravelling manufacturing differences. Journal of Analytical Atomic Spectrometry, 2014, 29, 51-57.	1.6	4
99	High-resolution imaging with SEM/T-SEM, EDX and SAM as a combined methodical approach for morphological and elemental analyses of single engineered nanoparticles. RSC Advances, 2014, 4, 49577-49587.	1.7	74
100	Gaining Improved Chemical Composition by Exploitation of Compton-to-Rayleigh Intensity Ratio in XRF Analysis. Analytical Chemistry, 2014, 86, 6858-6864.	3.2	29
101	A Method to Test the Performance of an Energy-Dispersive X-Ray Spectrometer (EDS). Microscopy and Microanalysis, 2014, 20, 1556-1564.	0.2	6
102	Measurement of Atomic Fractions in Cu(In,Ga)Se2 Films by Auger Electron Spectroscopy (AES) and Energy Dispersive Electron Probe Microanalysis (ED-EPMA). Microscopy and Microanalysis, 2014, 20, 402-403.	0.2	0
103	Determination of the k-Values of Copper-Gold Alloys with ED- and WD-EPMA - Results of an Inter-Laboratory Comparison. Microscopy and Microanalysis, 2014, 20, 730-731.	0.2	2
104	Performance of High-Resolution SEM/EDX Systems Equipped with Transmission Mode (TSEM) for Imaging and Measurement of Size and Size Distribution of Spherical Nanoparticles. Microscopy and Microanalysis, 2014, 20, 602-612.	0.2	46
105	Size characterization of airborne SiO2 nanoparticles with on-line and off-line measurement techniques: an interlaboratory comparison study. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	31
106	Performance of μ-XRF with SEM/EDS for trace analysis on the example of RoHS relevant elements – measurement, optimisation and prediction of the detection limits. Journal of Analytical Atomic Spectrometry, 2013, 28, 1466.	1.6	12
107	Surface Chemical Analysis at the Micro- and NanoScale. , 2013, , 301-322.		1
108	Interâ€laboratory comparison: Quantitative surface analysis of thin Feâ€Ni alloy films. Surface and Interface Analysis, 2012, 44, 192-199.	0.8	27

#	Article	IF	CITATIONS
109	Calculation of Xâ€ray tube spectra by means of photon generation yields and a modified Kramers background for sideâ€window Xâ€ray tubes. X-Ray Spectrometry, 2012, 41, 264-272.	0.9	10
110	Characterization of Pdâ€Niâ€Co alloy thin films by EDâ€EPMA with application of the STRATAGEM software. Surface and Interface Analysis, 2012, 44, 1456-1458.	0.8	13
111	Energy dispersive electron probe microanalysis (EDâ€EPMA) of elemental composition and thickness of Feâ€Ni alloy films. Surface and Interface Analysis, 2012, 44, 1459-1461.	0.8	25
112	Sol–gel preparation of calcium titanium phosphate: viscosity, thermal properties and solubility. Journal of Sol-Gel Science and Technology, 2012, 62, 273-280.	1.1	1
113	A routine procedure for the characterisation of polycapillary X-ray semi-lenses in parallelising mode with SEM/EDS. Journal of Analytical Atomic Spectrometry, 2011, 26, 499-504.	1.6	9
114	X-ray scattering in X-ray fluorescence spectra with X-ray monochromatic, polarised excitation – Modelling, experiment, and Monte-Carlo simulation. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 1493-1498.	0.6	26
115	Influence of gelatin coatings on compressive strength of porous hydroxyapatite ceramics. Journal of the European Ceramic Society, 2011, 31, 523-529.	2.8	52
116	X-ray scattering in X-ray fluorescence spectra with X-ray tube excitation – Modelling, experiment, and Monte-Carlo simulation. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 3568-3575.	0.6	21
117	Imaging the microstructure of duplex stainless steel samples with TOF-SIMS. Surface and Interface Analysis, 2010, 42, 739-742.	0.8	9
118	Final report on Key Comparison K67 and parallel Pilot Study P108: Measurement of composition of a thin Fe–Ni alloy film. Metrologia, 2010, 47, 08011-08011.	0.6	12
119	Determination of the real transmission of an xâ€ray lens for microâ€focus XRF at the SEM by coupling measurement with calculation of scatter spectra. X-Ray Spectrometry, 2009, 38, 216-221.	0.9	22
120	Improvements of the low-energy performance of a micro-focus x-ray source for XRF analysis with the SEM. X-Ray Spectrometry, 2009, 38, 308-311.	0.9	11
121	Determination of the efficiency of an energy dispersive X-ray spectrometer up to 50 keV with a SEM. Journal of Analytical Atomic Spectrometry, 2009, 24, 1034.	1.6	6
122	Exploitation of the hollow cathode effect for sensitivity enhancement of Grimm-type DC glow discharge optical emission spectroscopy. Journal of Analytical Atomic Spectrometry, 2009, 24, 680.	1.6	8
123	Performance Check of a Wavelength Dispersive X-Ray Spectrometer (WDS) attached to the SEM. Microscopy and Microanalysis, 2009, 15, 1118-1119.	0.2	2
124	X-Ray Scattering and its Benefits for X-Ray Spectrometry at the SEM. Microscopy and Microanalysis, 2009, 15, 1122-1123.	0.2	0
125	A Test Material and a quick Procedure for the Performance Check of X-Ray Spectrometers attached to the SEM. Microscopy and Microanalysis, 2009, 15, 1120-1121.	0.2	4
126	X-ray fluorescence as an additional analytical method for a scanning electron microscope. Mikrochimica Acta, 2008, 161, 413-419.	2.5	20

#	Article	IF	CITATIONS
127	Potential candidates of certified reference material for determination of hydrogen concentration with glow discharge optical emission spectrometry (GD-OES)—a feasibility study. Journal of Analytical Atomic Spectrometry, 2008, 23, 460.	1.6	15
128	Round Robin exercise: Coated materials for glow discharge spectroscopy. Journal of Analytical Atomic Spectrometry, 2006, 21, 74-81.	1.6	15
129	The Determination of the Efficiency of Energy Dispersive X-Ray Spectrometers by a New Reference Material. Microscopy and Microanalysis, 2006, 12, 406-415.	0.2	46
130	A new microfocus x-ray source, iMOXS, for highly sensitive XRF analysis in scanning electron microscopes. X-Ray Spectrometry, 2005, 34, 493-497.	0.9	30
131	Present possibilities of thin-layer analysis by GDOES. Surface and Interface Analysis, 2003, 35, 575-582.	0.8	68
132	Influence of hydrogen on the analytical figures of merit of glow discharge optical emission spectroscopy—friend or foe?. Journal of Analytical Atomic Spectrometry, 2003, 18, 521-526.	1.6	34
133	Glow discharge optical emission spectrometry: moving towards reliable thin film analysis–a short review. Journal of Analytical Atomic Spectrometry, 2003, 18, 670-679.	1.6	89
134	The effect of small quantities of hydrogen on a glow discharge in neon. Comparison with the argon case. Journal of Analytical Atomic Spectrometry, 2001, 16, 43-49.	1.6	43
135	Depth profiling of electrically non-conductive layered samples by RF-GDOES and HFM plasma SNMS. Applied Surface Science, 2001, 179, 30-37.	3.1	35
136	Investigations of the effect of hydrogen in an argon glow discharge. Journal of Analytical Atomic Spectrometry, 2000, 15, 1075-1080.	1.6	75
137	Emission spectra of copper and argon in an argon glow discharge containing small quantities of hydrogen. Journal of Analytical Atomic Spectrometry, 2000, 15, 951-958.	1.6	69
138	Low-energy BO and BO2 emission from H2BO3 sputtered in a low-pressure high-frequency SNMS plasma. Nuclear Instruments & Methods in Physics Research B, 1999, 155, 13-24.	0.6	2
139	Pressure influence on the depth resolution of rf-glow discharge depth profiling of multilayer coatings. Journal of Analytical Atomic Spectrometry, 1999, 14, 1533-1535.	1.6	9
140	On matrix effects in HF-plasma-SNMS analysis of sintered ceramic Ti-Al-(Si)-O. Fresenius' Journal of Analytical Chemistry, 1998, 361, 590-591.	1.5	7
141	On tertiary BO x ± ions in HF-plasma SNMS. Fresenius' Journal of Analytical Chemistry, 1998, 361, 737-740.	1.5	2
142	Energy spectra of secondary neutrals obtained by means of the electrostatic energy filter of a commercial low-pressure HF-plasma secondary neutral mass spectrometer. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 3158-3162.	0.9	3
143	Ti-N thin layer deposition using the magnetron discharge. Vacuum, 1996, 47, 1103-1104.	1.6	1
144	Ellipsometryâ€Based Approach for the Characterization of Mesoporous Thin Films for H ₂ Technologies. Advanced Engineering Materials, 0, , 2101320.	1.6	2