
## Alfredo Páº1/2na

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6176525/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Wind turbine wake models developed at the technical university of Denmark: A review. Renewable and<br>Sustainable Energy Reviews, 2016, 60, 752-769.                       | 8.2 | 229       |
| 2  | Evaluation of the wind direction uncertainty and its impact on wake modeling at the Horns Rev offshore wind farm. Wind Energy, 2014, 17, 1169-1178.                        | 1.9 | 154       |
| 3  | Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes. Wind Energy, 2014, 17, 39-55. | 1.9 | 131       |
| 4  | Wind climate estimation using WRF model output: method and model sensitivities over the sea.<br>International Journal of Climatology, 2015, 35, 3422-3439.                 | 1.5 | 124       |
| 5  | Offshore wind climatology based on synergetic use of Envisat ASAR, ASCAT and QuikSCAT. Remote Sensing of Environment, 2015, 156, 247-263.                                  | 4.6 | 124       |
| 6  | Offshore wind profiling using light detection and ranging measurements. Wind Energy, 2009, 12, 105-124.                                                                    | 1.9 | 121       |
| 7  | SAR-Based Wind Resource Statistics in the Baltic Sea. Remote Sensing, 2011, 3, 117-144.                                                                                    | 1.8 | 97        |
| 8  | Spatial and temporal variability of winds in the Northern European Seas. Renewable Energy, 2013, 57, 200-210.                                                              | 4.3 | 92        |
| 9  | Measurements and Modelling of the Wind Speed Profile in the Marine Atmospheric Boundary Layer.<br>Boundary-Layer Meteorology, 2008, 129, 479-495.                          | 1.2 | 88        |
| 10 | Complex terrain experiments in the New European Wind Atlas. Philosophical Transactions Series A,<br>Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160101. | 1.6 | 82        |
| 11 | Comparison of the atmospheric stability and wind profiles at two wind farm sites over a long marine fetch in the North Sea. Wind Energy, 2011, 14, 767-780.                | 1.9 | 75        |
| 12 | On the application of the Jensen wake model using a turbulenceâ€dependent wake decay coefficient: the<br>Sexbierum case. Wind Energy, 2016, 19, 763-776.                   | 1.9 | 73        |
| 13 | Ten Years of Boundary-Layer and Wind-Power Meteorology at HÃ,vsÃ,re, Denmark. Boundary-Layer<br>Meteorology, 2016, 158, 1-26.                                              | 1.2 | 72        |
| 14 | Remote Sensing Observation Used in Offshore Wind Energy. IEEE Journal of Selected Topics in Applied<br>Earth Observations and Remote Sensing, 2008, 1, 67-79.              | 2.3 | 71        |
| 15 | Atmospheric stabilityâ€dependent infinite windâ€farm models and the wakeâ€decay coefficient. Wind Energy,<br>2014, 17, 1269-1285.                                          | 1.9 | 71        |
| 16 | On the lengthâ€scale of the wind profile. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 2119-2131.                                                     | 1.0 | 70        |
| 17 | Lidar Scanning of Momentum Flux in and above the Atmospheric Surface Layer. Journal of Atmospheric and Oceanic Technology, 2010, 27, 959-976.                              | 0.5 | 64        |
| 18 | Wind Farm Wake: The Horns Rev Photo Case. Energies, 2013, 6, 696-716.                                                                                                      | 1.6 | 60        |

Alfredo Páº1/2 NA

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Comparing mixing-length models of the diabatic wind profile over homogeneous terrain. Theoretical and Applied Climatology, 2010, 100, 325-335.                                                         | 1.3 | 59        |
| 20 | The Wind Profile in the Coastal Boundary Layer: Wind Lidar Measurements and Numerical Modelling.<br>Boundary-Layer Meteorology, 2013, 147, 469-491.                                                    | 1.2 | 55        |
| 21 | Using Satellite SAR to Characterize the Wind Flow around Offshore Wind Farms. Energies, 2015, 8, 5413-5439.                                                                                            | 1.6 | 55        |
| 22 | Weibull Wind-Speed Distribution Parameters Derived from a Combination of Wind-Lidar and Tall-Mast<br>Measurements Over Land, Coastal and Marine Sites. Boundary-Layer Meteorology, 2016, 159, 329-348. | 1.2 | 51        |
| 23 | Charnock's Roughness Length Model and Non-dimensional Wind Profiles Over the Sea. Boundary-Layer<br>Meteorology, 2008, 128, 191-203.                                                                   | 1.2 | 50        |
| 24 | Length Scales of the Neutral Wind Profile over Homogeneous Terrain. Journal of Applied<br>Meteorology and Climatology, 2010, 49, 792-806.                                                              | 0.6 | 50        |
| 25 | Wind characteristics in the North and Baltic Seas from the QuikSCAT satellite. Wind Energy, 2014, 17, 123-140.                                                                                         | 1.9 | 48        |
| 26 | Hub Height Ocean Winds over the North Sea Observed by the NORSEWInD Lidar Array: Measuring<br>Techniques, Quality Control and Data Management. Remote Sensing, 2013, 5, 4280-4303.                     | 1.8 | 42        |
| 27 | Wind Class Sampling of Satellite SAR Imagery for Offshore Wind Resource Mapping. Journal of Applied<br>Meteorology and Climatology, 2010, 49, 2474-2491.                                               | 0.6 | 41        |
| 28 | Atmospheric stability and turbulence fluxes at Horns Rev—an intercomparison of sonic, bulk and WRF<br>model data. Wind Energy, 2012, 15, 717-731.                                                      | 1.9 | 39        |
| 29 | Turbulence characterization from a forward-looking nacelle lidar. Wind Energy Science, 2017, 2, 133-152.                                                                                               | 1.2 | 34        |
| 30 | Modeling large offshore wind farms under different atmospheric stability regimes with the Park wake model. Renewable Energy, 2014, 70, 164-171.                                                        | 4.3 | 33        |
| 31 | The HÃ,vsÃ,re Tall Wind-Profile Experiment: A Description of Wind Profile Observations in the<br>Atmospheric Boundary Layer. Boundary-Layer Meteorology, 2014, 150, 69-89.                             | 1.2 | 33        |
| 32 | Observations of the atmospheric boundary layer height under marine upstream flow conditions at a coastal site. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1924-1940.                   | 1.2 | 29        |
| 33 | Extrapolating Satellite Winds to Turbine Operating Heights. Journal of Applied Meteorology and Climatology, 2016, 55, 975-991.                                                                         | 0.6 | 29        |
| 34 | Long-Term Profiles of Wind and Weibull Distribution Parameters up to 600 m in a Rural Coastal and an<br>Inland Suburban Area. Boundary-Layer Meteorology, 2014, 150, 167-184.                          | 1.2 | 27        |
| 35 | Short-term nighttime wind turbine noise and cardiovascular events: A nationwide case-crossover study from Denmark. Environment International, 2018, 114, 160-166.                                      | 4.8 | 27        |
| 36 | The RUNE Experiment—A Database of Remote-Sensing Observations of Near-Shore Winds. Remote<br>Sensing, 2016, 8, 884.                                                                                    | 1.8 | 26        |

Alfredo Páº1/2 NA

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Ã~sterild: A natural laboratory for atmospheric turbulence. Journal of Renewable and Sustainable<br>Energy, 2019, 11, .                                                                      | 0.8 | 25        |
| 38 | Impact of Long-Term Exposure to Wind Turbine Noise on Redemption of Sleep Medication and<br>Antidepressants: A Nationwide Cohort Study. Environmental Health Perspectives, 2019, 127, 37005. | 2.8 | 24        |
| 39 | Long-term exposure to wind turbine noise at night and risk for diabetes: A nationwide cohort study.<br>Environmental Research, 2018, 165, 40-45.                                             | 3.7 | 23        |
| 40 | The effect of baroclinicity on the wind in the planetary boundary layer. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 619-630.                                          | 1.0 | 22        |
| 41 | Very short-term forecast of near-coastal flow using scanning lidars. Wind Energy Science, 2018, 3, 313-327.                                                                                  | 1.2 | 22        |
| 42 | Analysis of diabatic flow modification in the internal boundary layer. Meteorologische Zeitschrift, 2011, 20, 649-659.                                                                       | 0.5 | 21        |
| 43 | The turning of the wind in the atmospheric boundary layer. Journal of Physics: Conference Series, 2014, 524, 012118.                                                                         | 0.3 | 20        |
| 44 | Wind turbine load validation using lidarâ€based wind retrievals. Wind Energy, 2019, 22, 1512-1533.                                                                                           | 1.9 | 19        |
| 45 | A method to assess the accuracy of sonic anemometer measurements. Atmospheric Measurement Techniques, 2019, 12, 237-252.                                                                     | 1.2 | 18        |
| 46 | Long-Term Exposure to Wind Turbine Noise and Risk for Myocardial Infarction and Stroke: A<br>Nationwide Cohort Study. Environmental Health Perspectives, 2019, 127, 37004.                   | 2.8 | 17        |
| 47 | How does turbulence change approaching a rotor?. Wind Energy Science, 2018, 3, 293-300.                                                                                                      | 1.2 | 17        |
| 48 | Pregnancy exposure to wind turbine noise and adverse birth outcomes: a nationwide cohort study.<br>Environmental Research, 2018, 167, 770-775.                                               | 3.7 | 16        |
| 49 | On wake modeling, wind-farm gradients, and AEP predictions at the Anholt wind farm. Wind Energy Science, 2018, 3, 191-202.                                                                   | 1.2 | 16        |
| 50 | Long-term exposure to wind turbine noise and redemption of antihypertensive medication: A nationwide cohort study. Environment International, 2018, 121, 207-215.                            | 4.8 | 15        |
| 51 | Wind turbine load validation in wakes using wind field reconstruction techniques and nacelle lidar wind retrievals. Wind Energy Science, 2021, 6, 841-866.                                   | 1.2 | 15        |
| 52 | Lidar observations of marine boundary-layer winds and heights: a preliminary study. Meteorologische<br>Zeitschrift, 2015, 24, 581-589.                                                       | 0.5 | 14        |
| 53 | Aeroelastic load validation in wake conditions using nacelle-mounted lidar measurements. Wind Energy Science, 2020, 5, 1129-1154.                                                            | 1.2 | 13        |
| 54 | Rossby number similarity of an atmospheric RANS model using limited-length-scale turbulence closures extended to unstable stratification. Wind Energy Science, 2020, 5, 355-374.             | 1.2 | 13        |

Alfredo Páº1/2NA

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Challenges in simulating coastal effects on an offshore wind farm. Journal of Physics: Conference Series, 2017, 854, 012046.                                                                                                | 0.3 | 11        |
| 56 | Evaluation of idealized large-eddy simulations performed with the Weather Research and Forecasting<br>model using turbulence measurements from a 250 m meteorological mast. Wind Energy Science, 2021, 6,<br>645-661.       | 1.2 | 10        |
| 57 | Evaluating Mesoscale Simulations of the Coastal Flow Using Lidar Measurements. Journal of<br>Geophysical Research D: Atmospheres, 2018, 123, 2718-2736.                                                                     | 1.2 | 9         |
| 58 | The Effect of Averaging, Sampling, and Time Series Length on Wind Power Density Estimations.<br>Sustainability, 2020, 12, 3431.                                                                                             | 1.6 | 9         |
| 59 | Characterization of offshore vertical wind shear conditions in Southern New England. Wind Energy, 2021, 24, 465-480.                                                                                                        | 1.9 | 9         |
| 60 | Probabilistic estimation of the Dynamic Wake Meandering model parameters using SpinnerLidar-derived wake characteristics. Wind Energy Science, 2021, 6, 1117-1142.                                                          | 1.2 | 9         |
| 61 | The fence experiment – full-scale lidar-based shelter observations. Wind Energy Science, 2016, 1, 101-114.                                                                                                                  | 1.2 | 9         |
| 62 | Spectral Properties of ENVISAT ASAR and QuikSCAT Surface Winds in the North Sea. Remote Sensing, 2013, 5, 6096-6115.                                                                                                        | 1.8 | 8         |
| 63 | Assessing Obukhov Length and Friction Velocity from Floating Lidar Observations: A Data Screening and Sensitivity Computation Approach. Remote Sensing, 2022, 14, 1394.                                                     | 1.8 | 8         |
| 64 | Turbulence statistics from three different nacelle lidars. Wind Energy Science, 2022, 7, 831-848.                                                                                                                           | 1.2 | 7         |
| 65 | The space-time structure of turbulence for lidar-assisted wind turbine control. Renewable Energy, 2022, 195, 293-310.                                                                                                       | 4.3 | 7         |
| 66 | Turbulence Measurements with Dual-Doppler Scanning Lidars. Remote Sensing, 2019, 11, 2444.                                                                                                                                  | 1.8 | 6         |
| 67 | A hybrid solution for offshore wind resource assessment from limited onshore measurements.<br>Applied Energy, 2021, 298, 117245.                                                                                            | 5.1 | 5         |
| 68 | Evaluation of the global-blockage effect on power performance through simulations and measurements. Wind Energy Science, 2022, 7, 875-886.                                                                                  | 1.2 | 5         |
| 69 | Inflow characterization using measurements from the SpinnerLidar: the ScanFlow experiment.<br>Journal of Physics: Conference Series, 2018, 1037, 052027.                                                                    | 0.3 | 4         |
| 70 | Evaluation of two microscale flow models through two wind climate generalization procedures<br>using observations from seven masts at a complex site in Brazil. Journal of Renewable and Sustainable<br>Energy, 2018, 10, . | 0.8 | 4         |
| 71 | Wind turbine wake characterization using the SpinnerLidar measurements. Journal of Physics:<br>Conference Series, 2020, 1618, 062040.                                                                                       | 0.3 | 4         |
| 72 | Evaluating planetary boundary-layer schemes and large-eddy simulations with measurements from a 250-m meteorological mast. Journal of Physics: Conference Series, 2020, 1618, 062001.                                       | 0.3 | 3         |

Alfredo Páº1/2 NA

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Lidar Observations and Numerical Simulations of an Atmospheric Hydraulic Jump and Mountain<br>Waves. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033744.                                       | 1.2 | 3         |
| 74 | Towards Better Wind Resource Modeling in Complex Terrain: A k-Nearest Neighbors Approach.<br>Energies, 2021, 14, 4364.                                                                                               | 1.6 | 3         |
| 75 | Reply to the Comment by Bergmann on "The HÃ,vsÃ,re Tall Wind-Profile Experiment: A Description of<br>Wind Profile Observations in the Atmospheric Boundary Layer― Boundary-Layer Meteorology, 2015,<br>157, 547-551. | 1.2 | 2         |
| 76 | Departure from Flux-Gradient Relation in the Planetary Boundary Layer. Atmosphere, 2021, 12, 672.                                                                                                                    | 1.0 | 2         |
| 77 | Influence of nacelle-lidar scanning patterns on inflow turbulence characterization. Journal of Physics: Conference Series, 2022, 2265, 022016.                                                                       | 0.3 | 2         |
| 78 | Flux-gradient relation and atmospheric wind profiles — an exploration using WRF and lidars. Journal of Physics: Conference Series, 2020, 1618, 032032.                                                               | 0.3 | 1         |
| 79 | Wind turbine power performance characterization through aeroelastic simulations and virtual nacelle lidar measurements. Journal of Physics: Conference Series, 2022, 2265, 022059.                                   | 0.3 | 1         |
| 80 | The fence experiment — a first evaluation of shelter models. Journal of Physics: Conference Series,<br>2016, 753, 072009.                                                                                            | 0.3 | 0         |
| 81 | A one-year long turbulence simulation using a WRF-LES based modeling system at Ã~sterild. Journal of<br>Physics: Conference Series, 2022, 2265, 022011.                                                              | 0.3 | 0         |