Mindaugas Andrulevicius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/617631/publications.pdf

Version: 2024-02-01

		471509	552781
67	878	17	26
papers	citations	h-index	g-index
67	67	67	1116
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Optical, XPS and XRD Studies of Semiconducting Copper Sulfide Layers on a Polyamide Film. International Journal of Photoenergy, 2009, 2009, 1-8.	2.5	109
2	Diamond Like Carbon Films Containing Si: Structure and Nonlinear Optical Properties. Materials, 2020, 13, 1003.	2.9	67
3	Hydrophobic properties of the ion beam deposited DLC films containing SiOx. Thin Solid Films, 2007, 515, 7615-7618.	1.8	34
4	Synthesis of the silicon and silicon oxide doped a-C:H films from hexamethyldisiloxane vapor by DC ion beam. Surface and Coatings Technology, 2006, 200, 6240-6244.	4.8	33
5	Laser-assisted selective copper deposition on commercial PA6 by catalytic electroless plating – Process and activation mechanism. Applied Surface Science, 2019, 470, 405-410.	6.1	33
6	XPS study of the ultrathin a-C:H films deposited onto ion beam nitrided AISI 316 steel. Applied Surface Science, 2005, 249, 295-302.	6.1	28
7	Bias effects on structure and piezoresistive properties of DLC:Ag thin films. Surface and Coatings Technology, 2014, 255, 84-89.	4.8	28
8	Nitrogen-doped twisted graphene grown on copper by atmospheric pressure CVD from a decane precursor. Beilstein Journal of Nanotechnology, 2017, 8, 145-158.	2.8	25
9	Low-cost preparation method of well dispersed gold nanoparticles on reduced graphene oxide and electrocatalytic stability in PEM fuel cell. Arabian Journal of Chemistry, 2020, 13, 3585-3600.	4.9	25
10	Application of holographic sub-wavelength diffraction gratings for monitoring of kinetics of bioprocesses. Applied Surface Science, 2012, 258, 9292-9296.	6.1	22
11	Structure of the silver containing diamond like carbon films: Study by multiwavelength Raman spectroscopy and XRD. Diamond and Related Materials, 2013, 40, 32-37.	3.9	21
12	Piezoresistive properties of amorphous carbon based nanocomposite thin films deposited by plasma assisted methods. Thin Solid Films, 2013, 538, 78-84.	1.8	20
13	Synthesis of well dispersed gold nanoparticles on reduced graphene oxide and application in PEM fuel cells. Applied Surface Science, 2020, 504, 144511.	6.1	20
14	Growth of Ag films on polyethylene terephthalate (PET) deposited by electron beam. Thin Solid Films, 2006, 495, 118-123.	1.8	19
15	Shape-Memory Assisted Scratch-Healing of Transparent Thiol-Ene Coatings. Materials, 2019, 12, 482.	2.9	19
16	Photothermal reduction of thick graphene oxide multilayer films via direct laser writing: Morphology, structural and chemical properties. Superlattices and Microstructures, 2018, 122, 36-45.	3.1	18
17	Facile Synthesis of Silver-Doped Zinc Oxide Nanostructures as Efficient Scaffolds for Detection of p-Nitrophenol. Chemosensors, 2020, 8, 108.	3.6	18
18	XPS study of the a-C:H/Ti and a-C:H/a-Si interfaces. Vacuum, 2006, 80, 1007-1011.	3.5	17

#	Article	IF	Citations
19	Effect of oxidation of copper nanoparticles on absorption spectra of DLC:Cu nanocomposites. Diamond and Related Materials, 2019, 99, 107538.	3.9	17
20	Structure and Properties of Dual-doped PEDOT:PSS Multilayer Films. Materials Research, 2019, 22, .	1.3	17
21	Residual stress in polytetrafluoroethylene-metal nanocomposite films prepared by magnetron sputtering. Thin Solid Films, 2010, 518, 5944-5949.	1.8	16
22	Piezoresistive properties of diamond like carbon films containing copper. Diamond and Related Materials, 2015, 60, 20-25.	3.9	16
23	Modification of Graphene Oxide/V ₂ O ₅ Â <i>n</i> H ₂ O Nanocomposite Films via Direct Laser Irradiation. ACS Applied Materials & Direct Laser Irradiation. ACS Applied Mat	8.0	16
24	Growth and properties of the ion beam deposited SiOx containing DLC films. Vacuum, 2009, 83, S121-S123.	3.5	12
25	Refractive index sensor based on the diamond like carbon diffraction grating. Thin Solid Films, 2011, 519, 4082-4086.	1.8	12
26	Piezoresistive and electrical properties of Cr containing diamond-like carbon films. Surface and Coatings Technology, 2012, 211, 80-83.	4.8	12
27	Giant Negative Piezoresistive Effect in Diamond-like Carbon and Diamond-like Carbon-Based Nickel Nanocomposite Films Deposited by Reactive Magnetron Sputtering of Ni Target. ACS Applied Materials & Interfaces, 2018, 10, 15778-15785.	8.0	12
28	Structural and optical properties of doped amorphous carbon films deposited by magnetron sputtering. Thin Solid Films, 2019, 681, 15-22.	1.8	12
29	Structure and optical properties of diamond like carbon films containing aluminium and alumina. Applied Surface Science, 2020, 529, 147040.	6.1	11
30	Efficient method to obtain Platinum–Cobalt supported on graphene oxide and electrocatalyst development. International Journal of Hydrogen Energy, 2020, 45, 26226-26237.	7.1	11
31	Growth of ITO thin films by magnetron sputtering: OES study, opticaland electrical properties. Vacuum, 2009, 83, S118-S120.	3.5	10
32	Highly Resistant Zeroâ€Order Waveplates Based on Allâ€Silica Multilayer Coatings. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700764.	1.8	10
33	High performance catalytic system with enhanced durability in PEM fuel cell. International Journal of Hydrogen Energy, 2020, 45, 10409-10422.	7.1	10
34	A simple model of radiation swelling of silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 40, 141-146.	3.5	9
35	Ion beam energy effects on structure and properties of SiOx doped diamond-like carbon films. Surface and Coatings Technology, 2008, 202, 2328-2331.	4.8	9
36	FORMATION OF PERIODICAL MICROSTRUCTURES USING INTERFERENCE LITHOGRAPHY. Experimental Techniques, 2008, 32, 23-28.	1.5	8

#	Article	IF	Citations
37	Effects of 3D microlens transfer into fused silica substrate by CF4/O2 dry etching. Applied Surface Science, 2017, 393, 287-293.	6.1	8
38	Laser beam shape effect in optical control of the $\hat{l}\frac{1}{4}$ -fluidic channel depth employing scatterometry. Optics and Lasers in Engineering, 2010, 48, 664-670.	3.8	7
39	Self-Saturable Absorption and Reverse-Saturable Absorption Effects in Diamond-Like Carbon Films with Embedded Copper Nanoparticles. Coatings, 2019, 9, 100.	2.6	7
40	Transient absorption spectroscopy as a promising optical tool for the quality evaluation of graphene layers deposited by microwave plasma. Surface and Coatings Technology, 2020, 395, 125887.	4.8	7
41	Ultrafast relaxation dynamics of aluminum nanoparticles in solution. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 117, 113795.	2.7	6
42	Radiation resistance of nanolayered silicon nitride capacitors. Nuclear Instruments & Methods in Physics Research B, 2020, 471, 17-23.	1.4	6
43	Direct synthesis of graphene on silicon by reactive magnetron sputtering deposition. Surface and Coatings Technology, 2022, 437, 128361.	4.8	6
44	X-ray photoelectron spectroscopy study of MBE-grown Gd/EuTe multilayers. Journal of Alloys and Compounds, 2005, 401, 150-154.	5 . 5	5
45	Methods and Applications of Optical Holography. Medziagotyra, 2011, 17, .	0.2	5
46	Cerium doping and cerium aluminium co-doping effects on the sol-gel processing of Y3Fe5O12 (YIG): Bulk and thin films. Solid State Sciences, 2020, 99, 106065.	3.2	5
47	Morphological and structural study of ultra thin Al films on polymer substrate. Superlattices and Microstructures, 2004, 36, 79-86.	3.1	4
48	Ion beam deposition of amorphous hydrogenated carbon films on amorphous silicon interlayer: Experiment and simulation. Diamond and Related Materials, 2011, 20, 693-702.	3.9	4
49	The effect of UV Nd:YAG laser radiation on the optical and electrical properties of hydrothermal ZnO crystal. Optics and Laser Technology, 2016, 86, 21-25.	4.6	4
50	Hydrogen-Free Diamond Like Carbon Films with Embedded Cu Nanoparticles: Structure, Composition and Reverse Saturable Absorption Effect. Materials, 2020, 13, 760.	2.9	4
51	Effects of selenium treatment on composition and photoluminescence properties of porous silicon. Journal of Luminescence, 2007, 127, 431-434.	3.1	3
52	Diamond like carbon films with embedded Cu nanoclusters deposited by reactive high power impulse magnetron sputtering: Pulse length effects. Thin Solid Films, 2019, 673, 1-6.	1.8	3
53	Superconducting critical temperature and softening of the phonon spectrum in ultrathin nb- and nbn/graphene hybrids. Superconductor Science and Technology, 0, , .	3.5	3
54	Periodic structures modified with silver nanoparticles for novel plasmonic application. Proceedings of SPIE, 2008, , .	0.8	2

#	Article	IF	Citations
55	Valence State of Iron and Molybdenum Cations under Conditions of Anionic Deficiency in Sr 2 FeMoO 6– Β. Physica Status Solidi (B): Basic Research, 2020, 257, 1900387.	1.5	2
56	Characterisation and radiolysis of modified lithium orthosilicate pebbles with noble metal impurities. Fusion Engineering and Design, 2017, 124, 934-939.	1.9	2
57	Trilayer Composite System Based on SiO2, Thiol-Ene, and PEDOT:PSS. Focus on Stability after Thermal Treatment and Solar Irradiance. Polymers, 2021, 13, 3439.	4.5	2
58	Structural, Morphologic, and Ferroelectric Properties of PZT Films Deposited through Layer-by-Layer Reactive DC Magnetron Sputtering. Coatings, 2022, 12, 717.	2.6	2
59	Optical characterization of diffractive optical elements replicated in polymers. , 2005, , .		1
60	Metallization of poly(ethylene terephthalate) in the wide range of substrate temperatures. Surface and Coatings Technology, 2006, 200, 6490-6494.	4.8	1
61	Diffraction efficiency and noise analysis of hidden image holograms. Optik, 2017, 131, 805-812.	2.9	1
62	N-doped carbon material modified with cobalt nanoparticles as catalyst for oxygen reduction. Chemija, 2019, 30, .	0.2	1
63	Features of Polytetrafluoroethylene Coating Growth on Activated Surfaces from Gas Phase. Springer Proceedings in Physics, 2009, , 85-89.	0.2	1
64	Degree of phase transformations in the conditions of polythermal synthesis of SrBaFeMoO6–δ. Vacuum, 2020, 174, 109196.	3.5	0
65	Advanced design of UV waveplates based on nano-structured thin films. , 2017, , .		0
66	Cobalt-Activated Transfer-Free Synthesis of the Graphene on Si(100) by Anode Layer Ion Source. Processes, 2022, 10, 272.	2.8	0
67	Structural and Chemical Peculiarities of Nitrogen-Doped Graphene Grown Using Direct Microwave Plasma-Enhanced Chemical Vapor Deposition. Coatings, 2022, 12, 572.	2.6	O