Nicola Blake

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6176107/nicola-blake-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

2,458 48 30 59 h-index g-index citations papers 6.7 2,727 59 3.93 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
59	Observations of atmospheric oxidation and ozone production in South Korea. <i>Atmospheric Environment</i> , 2022 , 269, 118854	5.3	1
58	Observation-based modeling of ozone chemistry in the Seoul metropolitan area during the Korea-United States Air Quality Study (KORUS-AQ). <i>Elementa</i> , 2020 , 8,	3.6	19
57	Characterization, sources and reactivity of volatile organic compounds (VOCs) in Seoul and surrounding regions during KORUS-AQ. <i>Elementa</i> , 2020 , 8,	3.6	22
56	Hazardous Air Pollutants in Fresh and Aged Western US Wildfire Smoke and Implications for Long-Term Exposure. <i>Environmental Science & Environmental S</i>	10.3	26
55	Source Contributions to Carbon Monoxide Concentrations During KORUS-AQ Based on CAM-chem Model Applications. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 2796-2822	4.4	12
54	Biomass Burning Unlikely to Account for Missing Source of Carbonyl Sulfide. <i>Geophysical Research Letters</i> , 2019 , 46, 14912-14920	4.9	16
53	Wintertime Overnight NOx Removal in a Southeastern United States Coal-fired Power Plant Plume: A Model for Understanding Winter NOx Processing and its Implications. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 1412-1425	4.4	13
52	Ambient Nonmethane Hydrocarbon Levels Along Colorado's Northern Front Range: Acute and Chronic Health Risks. <i>Environmental Science & Environmental Sc</i>	10.3	34
51	Sources and Secondary Production of Organic Aerosols in the Northeastern United States during WINTER. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 7771-7796	4.4	57
50	Using an Inverse Model to Reconcile Differences in Simulated and Observed Global Ethane Concentrations and Trends Between 2008 and 2014. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 11,262	4.4	11
49	Formaldehyde in the Tropical Western Pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 11201-11226	4.4	21
48	Characterization of carbon monoxide, methane and nonmethane hydrocarbons in emerging cities of Saudi Arabia and Pakistan and in Singapore. <i>Journal of Atmospheric Chemistry</i> , 2017 , 74, 87-113	3.2	15
47	BrO and inferred Br_{<i>y</i>} profiles over the western Pacific: relevance of inorganic bromine sources and a Br_{<i>y</i>} minimum in the aged tropical tropopause layer. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 15245-152	6.8 2 70	22
46	Airborne measurements of BrO and the sum of HOBr and Br2 over the Tropical West Pacific from 1 to 15 km during the CONvective TRansport of Active Species in the Tropics (CONTRAST) experiment. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 12,560-12,578	4.4	15
45	Convective transport and scavenging of peroxides by thunderstorms observed over the central U.S. during DC3. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 4272-4295	4.4	20
44	Origin of oxidized mercury in the summertime free troposphere over the southeastern US. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 1511-1530	6.8	56
43	Using stable isotopes of hydrogen to quantify biogenic and thermogenic atmospheric methane sources: A case study from the Colorado Front Range. <i>Geophysical Research Letters</i> , 2016 , 43, 11,462	4.9	23

(2007-2016)

Wet scavenging of soluble gases in DC3 deep convective storms using WRF-Chem simulations and aircraft observations. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 4233-4257	4.4	24
A pervasive role for biomass burning in tropical high ozone/low water structures. <i>Nature Communications</i> , 2016 , 7, 10267	17.4	27
Constraints from observations and modeling on atmosphereBurface exchange of mercury in eastern North America. <i>Elementa</i> , 2016 , 4,	3.6	4
Representation of the Community Earth System Model (CESM1) CAM4-chem within the Chemistry-Climate Model Initiative (CCMI). <i>Geoscientific Model Development</i> , 2016 , 9, 1853-1890	6.3	94
An observationally constrained evaluation of the oxidative capacity in the tropical western Pacific troposphere. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 7461-7488	4.4	17
Airborne observations of mercury emissions from the Chicago/Gary urban/industrial area during the 2013 NOMADSS campaign. <i>Atmospheric Environment</i> , 2016 , 145, 415-423	5.3	6
Upper tropospheric ozone production from lightning NOx-impacted convection: Smoke ingestion case study from the DC3 campaign. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 2505-25	2 13 4	68
Oxidation of mercury by bromine in the subtropical Pacific free troposphere. <i>Geophysical Research Letters</i> , 2015 , 42, 10,494	4.9	51
Air quality in Mecca and surrounding holy places in Saudi Arabia during Hajj: initial survey. <i>Environmental Science & Environmental Science & Environ</i>	10.3	30
Evidence of mixing between polluted convective outflow and stratospheric air in the upper troposphere during DC3. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 11,477-11,491	4.4	14
A coupled model of the global cycles of carbonyl sulfide and CO2: A possible new window on the carbon cycle. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2013 , 118, 842-852	3.7	113
Long-term decline of global atmospheric ethane concentrations and implications for methane. <i>Nature</i> , 2012 , 488, 490-4	50.4	138
Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C ₂ fL ₁₀ volatile organic compounds (VOCs), CO ₂ , CO, NO, NO ₂ ,	6.8	172
Characterization of volatile organic compounds (VOCs) in Asian and north American pollution plumes during INTEX-B: identification of specific Chinese air mass tracers. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 5371-5388	6.8	51
Characteristics of the atmospheric CO2 signal as observed over the conterminous United States during INTEX-NA. <i>Journal of Geophysical Research</i> , 2008 , 113,		24
Carbonyl sulfide (OCS): Large-scale distributions over North America during INTEX-NA and relationship to CO2. <i>Journal of Geophysical Research</i> , 2008 , 113,		28
Role of convection in redistributing formaldehyde to the upper troposphere over North America and the North Atlantic during the summer 2004 INTEX campaign. <i>Journal of Geophysical Research</i> , 2008 , 113,		31
Strong evidence for negligible methyl chloroform (CH3CCl3) emissions from biomass burning. Geophysical Research Letters, 2007, 34,	4.9	5
	A pervasive role for biomass burning in tropical high ozone/low water structures. Nature Communications, 2016, 7, 10267 Constraints from observations and modeling on atmosphereBurface exchange of mercury in eastern North America. Elementa, 2016, 4, Representation of the Community Earth System Model (CESM1) CAM4-chem within the Chemistry-Climate Model Initiative (CCMI). Geoscientific Model Development, 2016, 9, 1853-1890 An observationally constrained evaluation of the oxidative capacity in the tropical western Pacific troposphere. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7461-7488 Airborne observations of mercury emissions from the Chicago/Gary urban/industrial area during the 2013 NOMADSS campaign. Atmospheric Environment, 2016, 145, 415-423 Upper tropospheric ozone production from lightning NOx-impacted convection: Smoke ingestion case study from the DC3 campaign. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2505-25 Oxidation of mercury by bromine in the subtropical Pacific free troposphere. Geophysical Research Letters, 2015, 42, 10,494 Air quality in Mecca and surrounding holy places in Saudi Arabia during Hajj: initial survey. Environmental Science Ramp; Technology, 2014, 48, 8529-37 Evidence of mixing between polluted convective outflow and stratospheric air in the upper troposphere during DC3. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,477-11,491 A coupled model of the global cycles of carbonyl sulfide and CO2: A possible new window on the carbon cycle. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 842-852 Long-term decline of global atmospheric ethane concentrations and implications for methane. Nature, 2012, 488, 490-4 Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C _{28lt;/sub> Tolkt;sub>48lt;sub> On, No, No, No, No, No, No, No, No, No, No}	aircraft observations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4233-4257 A pervasive role for biomass burning in tropical high ozone/low water structures. Nature Communications, 2016, 7, 10267 Constraints from observations and modeling on atmosphereBurface exchange of mercury in eastern North America. Elementa, 2016, 4, Representation of the Community Earth System Model (CESM1) CAM4-chem within the Chemistry-Climate Model Initiative (CCMI). Geoscientific Model Development, 2016, 9, 1853-1890 An observationally constrained evaluation of the oxidative capacity in the tropical western Pacific troposphere. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7461-7488 Airborne observations of mercury emissions from the Chicago/Gary urban/industrial area during the 2013 NOMADSS campaign. Atmospheric Environment, 2016, 145, 415-423 Upper tropospheric ozone production from lightning NOx-impacted convection: Smoke ingestion case study from the DC3 campaign. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2505-2525/ Oxidation of mercury by bromine in the subtropical Pacific free troposphere. Geophysical Research Letters, 2015, 42, 10,494 Air quality in Mecca and surrounding holy places in Saudi Arabia during Hajj: initial survey. Evidence of mixing between polluted convective outflow and stratospheric air in the upper troposphere during DC3. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11, 477-11, 491 A coupled model of the global cycles of carbonyl sulfide and CO2: A possible new window on the carbon cycle. Journal of Geophysical Research B: Atmospheres, 2014, 119, 11, 477-11, 491 Long-term decline of global atmospheric ethane concentrations and implications for methane. Nature, 2012, 488, 490-4 Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated CRILSusb&qt28lt/sub&qt108lt/sub&qt Volatile organic compounds (VOCs), CO<sub&qt28lt/sub&qt Ostalic organic compounds (VOCs), CO<sub&qt28lt/sub&qt Ostalic organi

24	Late-spring increase of trans-Pacific pollution transport in the upper troposphere. <i>Geophysical Research Letters</i> , 2006 , 33, n/a-n/a	4.9	32
23	Halogen-driven low-altitude O3 and hydrocarbon losses in spring at northern high latitudes. <i>Journal of Geophysical Research</i> , 2006 , 111,		35
22	Atomic chlorine concentrations derived from ethane and hydroxyl measurements over the equatorial Pacific Ocean: Implication for dimethyl sulfide and bromine monoxide. <i>Journal of Geophysical Research</i> , 2005 , 110,		59
21	Long-term decrease in the global atmospheric burden of tetrachloroethene (C2Cl4). <i>Geophysical Research Letters</i> , 2004 , 31,	4.9	34
20	Carbonyl sulfide and carbon disulfide: Large-scale distributions over the western Pacific and emissions from Asia during TRACE-P. <i>Journal of Geophysical Research</i> , 2004 , 109,		48
19	Airborne sampling of aerosol particles: Comparison between surface sampling at Christmas Island and P-3 sampling during PEM-Tropics B. <i>Journal of Geophysical Research</i> , 2003 , 108, PEM 2-1		15
18	BIBLE A whole-air sampling as a window on Asian biogeochemistry. <i>Journal of Geophysical Research</i> , 2003 , 108, n/a-n/a		4
17	Latitudinal, vertical, and seasonal variations of C1-C4 alkyl nitrates in the troposphere over the Pacific Ocean during PEM-Tropics A and B: Oceanic and continental sources. <i>Journal of Geophysical Research</i> , 2003 , 108,		71
16	Seasonal variations of C2II4 nonmethane hydrocarbons and C1II4 alkyl nitrates at the Summit research station in Greenland. <i>Journal of Geophysical Research</i> , 2003 , 108,		57
15	The seasonal evolution of NMHCs and light alkyl nitrates at middle to high northern latitudes during TOPSE. <i>Journal of Geophysical Research</i> , 2003 , 108,		46
14	Ozone depletion events observed in the high latitude surface layer during the TOPSE aircraft program. <i>Journal of Geophysical Research</i> , 2003 , 108, TOP 4-1		67
13	Tunable diode laser measurements of formaldehyde during the TOPSE 2000 study: Distributions, trends, and model comparisons. <i>Journal of Geophysical Research</i> , 2003 , 108,		53
12	Springtime photochemistry at northern mid and high latitudes. <i>Journal of Geophysical Research</i> , 2003 , 108,		40
11	Photochemical production and evolution of selected C2\$\tilde{\mathbb{Q}}\$5 alkyl nitrates in tropospheric air influenced by Asian outflow. <i>Journal of Geophysical Research</i> , 2003 , 108,		47
10	NMHCs and halocarbons in Asian continental outflow during the Transport and Chemical Evolution over the Pacific (TRACE-P) Field Campaign: Comparison With PEM-West B. <i>Journal of Geophysical Research</i> , 2003 , 108,		154
9	Dimethyl disulfide (DMDS) and dimethyl sulfide (DMS) emissions from biomass burning in Australia. <i>Geophysical Research Letters</i> , 2003 , 30,	4.9	50
8	Airborne tunable diode laser measurements of formaldehyde during TRACE-P: Distributions and box model comparisons. <i>Journal of Geophysical Research</i> , 2003 , 108,		61
7	Intercontinental transport of pollution manifested in the variability and seasonal trend of springtime O3 at northern middle and high latitudes. <i>Journal of Geophysical Research</i> , 2003 , 108,		19

LIST OF PUBLICATIONS

6	A biomass burning source of C1t14 alkyl nitrates. <i>Geophysical Research Letters</i> , 2002 , 29, 21-1-21-4 4.9	31
5	Formaldehyde over the central Pacific during PEM-Tropics B. <i>Journal of Geophysical Research</i> , 2001 , 106, 32717-32731	25
4	Large-scale latitudinal and vertical distributions of NMHCs and selected halocarbons in the troposphere over the Pacific Ocean during the March-April 1999 Pacific Exploratory Mission (PEM-Tropics B). <i>Journal of Geophysical Research</i> , 2001 , 106, 32627-32644	58
3	Reactive nitrogen budget during the NASA SONEX Mission. <i>Geophysical Research Letters</i> , 1999 , 26, 3057- <u>3</u> ,960	50
2	Three-dimensional distribution of nonmenthane hydrocarbons and halocarbons over the northwestern Pacific during the 1991 Pacific Exploratory Mission (PEM-West A). <i>Journal of Geophysical Research</i> , 1996 , 101, 1763-1778	121
1	Origin of oxidized mercury in the summertime free troposphere over the southeastern US	1