Le Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6175831/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-Doped Ti ³⁺ Enhanced Photocatalyst for Hydrogen Production under Visible Light. Journal of the American Chemical Society, 2010, 132, 11856-11857.	13.7	1,157
2	Active Facets on Titanium(III)â€Doped TiO ₂ : An Effective Strategy to Improve the Visibleâ€Light Photocatalytic Activity. Angewandte Chemie - International Edition, 2012, 51, 6223-6226.	13.8	339
3	Selective anion exchange with nanogated isoreticular positive metal-organic frameworks. Nature Communications, 2013, 4, 2344.	12.8	336
4	Zeolite RHO-Type Net with the Lightest Elements. Journal of the American Chemical Society, 2009, 131, 6111-6113.	13.7	161
5	Atomically Precise Doping of Monomanganese Ion into Coreless Supertetrahedral Chalcogenide Nanocluster Inducing Unusual Red Shift in Mn ²⁺ Emission. Journal of the American Chemical Society, 2014, 136, 4769-4779.	13.7	150
6	Monocopper Doping in Cd-In-S Supertetrahedral Nanocluster via Two-Step Strategy and Enhanced Photoelectric Response. Journal of the American Chemical Society, 2013, 135, 10250-10253.	13.7	117
7	Photocatalytic metal–organic frameworks for organic transformations. CrystEngComm, 2017, 19, 4126-4136.	2.6	116
8	High CO ₂ and H ₂ Uptake in an Anionic Porous Framework with Amino-Decorated Polyhedral Cages. Chemistry of Materials, 2012, 24, 2624-2626.	6.7	109
9	Threeâ€Dimensional Covalent Coâ€Assembly between Inorganic Supertetrahedral Clusters and Imidazolates. Angewandte Chemie - International Edition, 2011, 50, 2536-2539.	13.8	104
10	Largest Molecular Clusters in the Supertetrahedral T <i>n</i> Series. Journal of the American Chemical Society, 2010, 132, 10823-10831.	13.7	102
11	Assembly of Supertetrahedral T ₅ Copperâ^'Indium Sulfide Clusters into a Super-Supertetrahedron of Infinite Order. Journal of the American Chemical Society, 2010, 132, 3283-3285.	13.7	99
12	Superbase Route to Supertetrahedral Chalcogenide Clusters. Journal of the American Chemical Society, 2012, 134, 3619-3622.	13.7	84
13	Interrupted Chalcogenideâ€Based Zeoliteâ€Analogue Semiconductor: Atomically Precise Doping for Tunable Electroâ€∤Photoelectrochemical Properties. Angewandte Chemie - International Edition, 2015, 54, 5103-5107.	13.8	84
14	Cuprous Iodide Pseudopolymorphs Based on Imidazole Ligand and Their Luminescence Thermochromism. Crystal Growth and Design, 2016, 16, 2322-2327.	3.0	69
15	Synthetic Control of Selenide Supertetrahedral Clusters and Threeâ€Dimensional Coâ€assembly by Chargeâ€Complementary Metal Cations. Angewandte Chemie - International Edition, 2009, 48, 7204-7207.	13.8	68
16	A zeolitic porous lithium–organic framework constructed from cubane clusters. Chemical Communications, 2011, 47, 5536-5538.	4.1	65
17	Two Zeoliteâ€Type Frameworks in One Metal–Organic Framework with Zn ₂₄ @Zn ₁₀₄ Cubeâ€inâ€Sodalite Architecture. Angewandte Chemie - International Edition, 2012, 51, 8538-8541.	13.8	62
18	Poly(isophthalic acid)(ethylene oxide) as a Macromolecular Modulator for Metal–Organic Polyhedra. Journal of the American Chemical Society, 2016, 138, 9646-9654.	13.7	61

LE WANG

#	Article	IF	CITATIONS
19	Self-doped Ti3+@TiO2 visible light photocatalyst: Influence of synthetic parameters on the H2 production activity. International Journal of Hydrogen Energy, 2014, 39, 711-717.	7.1	60
20	Multi-Step Host–Guest Energy Transfer Between Inorganic Chalcogenide-Based Semiconductor Zeolite Material and Organic Dye Molecules. Chemistry of Materials, 2015, 27, 4099-4104.	6.7	51
21	A Metal–Organic Framework with Exceptional Activity for Câ^'H Bond Amination. Angewandte Chemie - International Edition, 2018, 57, 511-515.	13.8	47
22	A Large Indium Sulfide Supertetrahedral Cluster Built from Integration of ZnS-like Tetrahedral Shell with NaCl-like Octahedral Core. Journal of the American Chemical Society, 2011, 133, 15886-15889.	13.7	40
23	Assembly of super-supertetrahedral metal–organic clusters into a hierarchical porous cubic framework. Chemical Communications, 2012, 48, 7498.	4.1	37
24	Coassembly between the Largest and Smallest Metal Chalcogenide Supertetrahedral Clusters. Inorganic Chemistry, 2013, 52, 2259-2261.	4.0	36
25	A novel copper-rich open-framework chalcogenide constructed from octahedral Cu ₄ Se ₆ and icosahedral Cu ₈ Se ₁₃ nanoclusters. Chemical Communications, 2016, 52, 4140-4143.	4.1	34
26	Effects of ligand and guest solvent molecules on the luminescence properties of Tb : Eu-codoped indium-based MOFs. Dalton Transactions, 2016, 45, 4518-4521.	3.3	27
27	Highly effective nanosegregation of dual dopants in a micron-sized nanocluster-based semiconductor molecular single crystal for targeting white-light emission. Journal of Materials Chemistry C, 2016, 4, 1645-1650.	5.5	19
28	Coordinative Alignment To Achieve Ordered Guest Molecules in a Versatile Molecular Crystalline Sponge. Crystal Growth and Design, 2017, 17, 6174-6177.	3.0	16
29	Lead-free, stable orange-red-emitting hybrid copper based organic–inorganic compounds. Dalton Transactions, 2021, 50, 2766-2773.	3.3	15
30	Integration of supertetrahedral cluster with reduced graphene oxide sheets for enhanced photostability and photoelectrochemical properties. Science China Chemistry, 2013, 56, 423-427.	8.2	12
31	Degradation of 3-chlorocarbazole in water by sulfidated zero-valent iron/peroxymonosulfate system: Kinetics, influential factors, degradation products and pathways. Chemosphere, 2022, 296, 134016.	8.2	11
32	Si(bzimpy) ₂ – a hexacoordinate silicon pincer complex for electron transport and electroluminescence. Chemical Communications, 2018, 54, 14073-14076.	4.1	10
33	A cobalt sulfide cluster-based catholyte for aqueous flow battery applications. Journal of Materials Chemistry A, 2018, 6, 21927-21932.	10.3	9
34	A Metal–Organic Framework with Exceptional Activity for Câ^'H Bond Amination. Angewandte Chemie, 2018, 130, 520-524.	2.0	8
35	Stepwise Assembly of an Electroactive Framework from a Co 6 S 8 Superatomic Metalloligand and Cuprous Iodide Building Units. Chemistry - A European Journal, 2020, 26, 12523-12527.	3.3	5
36	Stepwise Assembly of an Electroactive Framework from a Co 6 S 8 Superatomic Metalloligand and Cuprous lodide Building Units. Chemistry - A European Journal, 2020, 26, 12493-12493.	3.3	1