Jiandong Huo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6175649/publications.pdf

Version: 2024-02-01

471061 752256 3,570 20 17 20 h-index citations g-index papers 29 29 29 5774 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell, 2022, 185, 467-484.e15.	13.5	788
2	Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum. Cell, 2022, 185, 2422-2433.e13.	13.5	532
3	Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nature Structural and Molecular Biology, 2020, 27, 846-854.	3.6	434
4	Neutralization of SARS-CoV-2 by Destruction of the Prefusion Spike. Cell Host and Microbe, 2020, 28, 445-454.e6.	5.1	298
5	Structural basis for the neutralization of SARS-CoV-2 by an antibody from a convalescent patient. Nature Structural and Molecular Biology, 2020, 27, 950-958.	3.6	268
6	Structure and Interactions of the Human Programmed Cell Death 1 Receptor. Journal of Biological Chemistry, 2013, 288, 11771-11785.	1.6	256
7	A COVID-19 vaccine candidate using SpyCatcher multimerization of the SARS-CoV-2 spike protein receptor-binding domain induces potent neutralising antibody responses. Nature Communications, 2021, 12, 542.	5.8	200
8	Evaluation of the immunogenicity of prime-boost vaccination with the replication-deficient viral vectored COVID-19 vaccine candidate ChAdOx1 nCoV-19. Npj Vaccines, 2020, 5, 69.	2.9	121
9	Potent cross-reactive antibodies following Omicron breakthrough in vaccinees. Cell, 2022, 185, 2116-2131.e18.	13.5	105
10	A potent SARS-CoV-2 neutralising nanobody shows therapeutic efficacy in the Syrian golden hamster model of COVID-19. Nature Communications, 2021, 12, 5469.	5.8	102
11	A haemagglutination test for rapid detection of antibodies to SARS-CoV-2. Nature Communications, 2021, 12, 1951.	5.8	54
12	Remarkably low affinity of CD4/peptide-major histocompatibility complex class II protein interactions. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5682-5687.	3.3	51
13	Cryo-EM structure of PepT2 reveals structural basis for proton-coupled peptide and prodrug transport in mammals. Science Advances, 2021, 7, .	4.7	37
14	Structural basis of antifolate recognition and transport by PCFT. Nature, 2021, 595, 130-134.	13.7	36
15	Pathogen-sugar interactions revealed by universal saturation transfer analysis. Science, 2022, 377, .	6.0	24
16	Architecture of cell–cell junctions in situ reveals a mechanism for bacterial biofilm inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	22
17	An Investigation of Hierachical Protein Recruitment to the Inhibitory Platelet Receptor, G6B-b. PLoS ONE, 2012, 7, e49543.	1.1	21
18	The use of nanobodies in a sensitive ELISA test for SARS-CoV-2 Spike 1 protein. Royal Society Open Science, 2021, 8, 211016.	1.1	19

#	Article	IF	CITATIONS
19	Correlation between the binding affinity and the conformational entropy of nanobody SARS-CoV-2 spike protein complexes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	11
20	A Protein Expression Toolkit for Studying Signaling in T Cells. Methods in Molecular Biology, 2017, 1584, 451-472.	0.4	0