
Lawrence O Hall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6175484/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	VAM: An End-to-End Simulator for Time Series Regression and Temporal Link Prediction in Social Media Networks. IEEE Transactions on Computational Social Systems, 2023, 10, 1479-1490.	4.4	5
2	Ensembles of Convolutional Neural Networks for Survival Time Estimation of High-Grade Glioma Patients from Multimodal MRI. Diagnostics, 2022, 12, 345.	2.6	7
3	A disector-based framework for the automatic optical fractionator. Journal of Chemical Neuroanatomy, 2022, 124, 102134.	2.1	0
4	Discovery of a Generalization Gap of Convolutional Neural Networks on COVID-19 X-Rays Classification. IEEE Access, 2021, 9, 72970-72979.	4.2	28
5	An adaptive digital stain separation method for deep learning-based automatic cell profile counts. Journal of Neuroscience Methods, 2021, 354, 109102.	2.5	3
6	A Radiogenomics Ensemble to Predict EGFR and KRAS Mutations in NSCLC. Tomography, 2021, 7, 154-168.	1.8	15
7	Fuzzy Set Similarity for Feature Selection in Classification. , 2020, , .		0
8	Challenges for the Repeatability of Deep Learning Models. IEEE Access, 2020, 8, 211860-211868.	4.2	37
9	¹⁸ F-FDG PET/CT Habitat Radiomics Predicts Outcome of Patients with Cervical Cancer Treated with Chemoradiotherapy. Radiology: Artificial Intelligence, 2020, 2, e190218.	5.8	19
10	Convolutional Neural Network ensembles for accurate lung nodule malignancy prediction 2 years in the future. Computers in Biology and Medicine, 2020, 122, 103882.	7.0	22
11	Hybrid models for lung nodule malignancy prediction utilizing convolutional neural network ensembles and clinical data. Journal of Medical Imaging, 2020, 7, 1.	1.5	3
12	Lung Nodule Sizes Are Encoded When Scaling CT Image for CNN's. Tomography, 2020, 6, 209-215.	1.8	5
13	Deep Feature Stability Analysis Using CT Images of a Physical Phantom across Scanner Manufacturers, Cartridges, Pixel Sizes, and Slice Thickness. Tomography, 2020, 6, 250-260.	1.8	6
14	Stability and reproducibility of computed tomography radiomic features extracted from peritumoral regions of lung cancer lesions. Medical Physics, 2019, 46, 5075-5085.	3.0	49
15	Automatic ground truth for deep learning stereology of immunostained neurons and microglia in mouse neocortex. Journal of Chemical Neuroanatomy, 2019, 98, 1-7.	2.1	13
16	Revealing Tumor Habitats from Texture Heterogeneity Analysis for Classification of Lung Cancer Malignancy and Aggressiveness. Scientific Reports, 2019, 9, 4500.	3.3	31
17	Predicting Longitudinal User Activity at Fine Time Granularity in Online Collaborative Platforms. , 2019, , .		5

Automatic Cell Counting using Active Deep Learning and Unbiased Stereology. , 2019, , .

3

#	Article	IF	CITATIONS
19	Automated Cell Counts on Tissue Sections by Deep Learning and Unbiased Stereology. Journal of Chemical Neuroanatomy, 2019, 96, 94-101.	2.1	25
20	Automatic stereology of mean nuclear size of neurons using an active contour framework. Journal of Chemical Neuroanatomy, 2019, 96, 110-115.	2.1	3
21	Explaining Deep Features Using Radiologist-Defined Semantic Features and Traditional Quantitative Features. Tomography, 2019, 5, 192-200.	1.8	24
22	Towards deep radiomics: nodule malignancy prediction using CNNs on feature images. , 2019, , .		1
23	A Primer on Cluster Analysis by James C. Bezdek [By the Book]. IEEE Systems, Man, and Cybernetics Magazine, 2018, 4, 48-50.	1.4	3
24	Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches. American Journal of Neuroradiology, 2018, 39, 208-216.	2.4	281
25	Iterative Deep Learning Based Unbiased Stereology with Human-in-the-Loop. , 2018, , .		6
26	Representation of Deep Features using Radiologist defined Semantic Features. , 2018, 2018, .		2
27	Delta radiomic features improve prediction for lung cancer incidence: A nested case–control analysis of the National Lung Screening Trial. Cancer Medicine, 2018, 7, 6340-6356.	2.8	27
28	Delta Radiomics Improves Pulmonary Nodule Malignancy Prediction in Lung Cancer Screening. IEEE Access, 2018, 6, 77796-77806.	4.2	72
29	Predicting Nodule Malignancy using a CNN Ensemble Approach. , 2018, 2018, .		32
30	Predicting malignant nodules by fusing deep features with classical radiomics features. Journal of Medical Imaging, 2018, 5, 1.	1.5	68
31	Unbiased estimation of cell number using the automatic optical fractionator. Journal of Chemical Neuroanatomy, 2017, 80, A1-A8.	2.1	24
32	A framework for nucleus and overlapping cytoplasm segmentation in cervical cytology extended depth of field and volume images. Computerized Medical Imaging and Graphics, 2017, 59, 38-49.	5.8	36
33	Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction. Journal of Magnetic Resonance Imaging, 2017, 46, 115-123.	3.4	69
34	Synthetic minority image over-sampling technique: How to improve AUC for glioblastoma patient survival prediction. , 2017, , .		14
35	Finding label noise examples in large scale datasets. , 2017, , .		10
36	Deep Feature Transfer Learning in Combination with Traditional Features Predicts Survival among Patients with Lung Adenocarcinoma. Tomography, 2016, 2, 388-395.	1.8	128

#	Article	IF	CITATIONS
37	A quantitative histogram-based approach to predict treatment outcome for Soft Tissue Sarcomas using pre- and post-treatment MRIs. , 2016, , .		1
38	Combining deep neural network and traditional image features to improve survival prediction accuracy for lung cancer patients from diagnostic CT. , 2016, , .		45
39	Improving malignancy prediction through feature selection informed by nodule size ranges in NLST. , 2016, 2019, 001939-1944.		5
40	Spectral sparsification in spectral clustering. , 2016, , .		7
41	Predicting Malignant Nodules from Screening CT Scans. Journal of Thoracic Oncology, 2016, 11, 2120-2128.	1.1	226
42	Correlation Based Random Subspace Ensembles for Predicting Number of Axillary Lymph Node Metastases in Breast DCE-MRI Tumors. , 2015, , .		2
43	Large Data Clustering Using Quadratic Programming: A Comprehensive Quantitative Analysis. , 2015, , .		4
44	Heterogeneity in intratumoral regions with rapid gadolinium washout correlates with estrogen receptor status and nodal metastasis. Journal of Magnetic Resonance Imaging, 2015, 42, 1421-1430.	3.4	44
45	A Robust Approach for Automated Lung Segmentation in Thoracic CT. , 2015, , .		8
46	Accelerating Fuzzy-C Means Using an Estimated Subsample Size. IEEE Transactions on Fuzzy Systems, 2014, 22, 1229-1244.	9.8	71
47	Dominant Sets as a Framework for Cluster Ensembles: An Evolutionary Game Theory Approach. , 2014, ,		3
48	Predicting Outcomes of Nonsmall Cell Lung Cancer Using CT Image Features. IEEE Access, 2014, 2, 1418-1426.	4.2	104
49	Exploring Brain Tumor Heterogeneity for Survival Time Prediction. , 2014, , .		5
50	Experiments with large ensembles for segmentation and classification of cervical cancer biopsy images. , 2014, , .		4
51	Radiologically Defined Ecological Dynamics and Clinical Outcomes in Glioblastoma Multiforme: Preliminary Results. Translational Oncology, 2014, 7, 5-13.	3.7	82
52	Test–Retest Reproducibility Analysis of Lung CT Image Features. Journal of Digital Imaging, 2014, 27, 805-823.	2.9	216
53	Reproducibility and Prognosis of Quantitative Features Extracted from CT Images. Translational Oncology, 2014, 7, 72-87.	3.7	258
54	Automated delineation of lung tumors from CT images using a single click ensemble segmentation approach. Pattern Recognition, 2013, 46, 692-702.	8.1	138

#	Article	IF	CITATIONS
55	Effect of Texture Features in Computer Aided Diagnosis of Pulmonary Nodules in Low-Dose Computed Tomography. , 2013, , .		24
56	A Texture Feature Ranking Model for Predicting Survival Time of Brain Tumor Patients. , 2013, , .		4
57	Dempster-Shafer theory of evidence in Single Pass Fuzzy C Means. , 2013, , .		2
58	ITERATIVE FEATURE PERTURBATION AS A GENE SELECTOR FOR MICROARRAY DATA. International Journal of Pattern Recognition and Artificial Intelligence, 2012, 26, 1260003.	1.2	26
59	Radiomics: the process and the challenges. Magnetic Resonance Imaging, 2012, 30, 1234-1248.	1.8	1,675
60	Comparison of scalable fuzzy clustering methods. , 2012, , .		6
61	A novel algorithm for automated counting of stained cells on thick tissue sections. , 2012, , .		1
62	Objective functionâ€based clustering. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2012, 2, 326-339.	6.8	10
63	Increased classification accuracy and speedup through pair-wise feature selection for support vector machines. , 2011, , .		5
64	Convergence of the Single-Pass and Online Fuzzy C-Means Algorithms. IEEE Transactions on Fuzzy Systems, 2011, 19, 792-794.	9.8	39
65	Developing a classifier model for lung tumors in CT-scan images. , 2011, , .		25
66	Detecting and ordering salient regions. Data Mining and Knowledge Discovery, 2011, 22, 259-290.	3.7	0
67	Procedure for stability analysis of gene selection from cross-site gene expression data. , 2011, , .		Ο
68	Detection of Anomalous Particles from the Deepwater Horizon Oil Spill Using the SIPPER3 Underwater Imaging Platform. , 2011, , .		3
69	Filtering for improved gene selection on microarray data. , 2010, , .		2
70	On convergence properties of the singlepass and online fuzzy c-means algorithm. , 2010, , .		1
71	Scalable fuzzy neighborhood DBSCAN. , 2010, , .		9
72	Evaluating scalable fuzzy clustering. , 2010, , .		5

#	Article	IF	CITATIONS
73	Finding the right genes for disease and prognosis prediction. , 2010, , .		Ο
74	Automatic red tide detection from MODIS satellite images. , 2009, , .		6
75	Automatically countering imbalance and its empirical relationship to cost. Data Mining and Knowledge Discovery, 2008, 17, 225-252.	3.7	202
76	Semi-supervised learning on large complex simulations. , 2008, , .		6
77	Feature selection for microarray data by AUC analysis. Conference Proceedings IEEE International Conference on Systems, Man, and Cybernetics, 2008, , .	0.0	6
78	Scalable fuzzy clustering algorithms. , 2008, , .		0
79	A fuzzy c means variant for clustering evolving data streams. , 2007, , .		23
80	Fuzzy Ants and Clustering. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2007, 37, 758-769.	2.9	56
81	Ensembles of Fuzzy Classifiers. IEEE International Conference on Fuzzy Systems, 2007, , .	0.0	20
82	Clinical deployment of a medical expert system to increase accruals for clinical trials: Challenges. , 2007, , .		2
83	Multivariate Feature Selection using Random Subspace Classifiers for Gene Expression Data. , 2007, , .		3
84	Creating Streaming Iterative Soft Clustering Algorithms. , 2007, , .		13
85	Single Pass Fuzzy C Means. IEEE International Conference on Fuzzy Systems, 2007, , .	0.0	75
86	Horizon Detection Using Machine Learning Techniques. , 2006, , .		57
87	A Cluster Ensemble Framework for Large Data sets. , 2006, , .		22
88	Improving the process [of publishing in this Transactions]. IEEE Transactions on Systems, Man, and Cybernetics, 2004, 34, 1314-1314.	5.0	1
89	KNOWLEDGE-GUIDED CLASSIFICATION OF COASTAL ZONE COLOR IMAGES OFF THE WEST FLORIDA SHELF. International Journal of Pattern Recognition and Artificial Intelligence, 2000, 14, 987-1007.	1.2	12
90	Encoding of Production Rules in a Connectionist Network. Journal of Intelligent and Fuzzy Systems, 1996, 4, 1-18.	1.4	4

#	Article	IF	CITATIONS
91	OBTAINING FUZZY CLASSIFICATION RULES IN SEGMENTATION. Advances in Fuzzy Systems, 1995, , 84-92.	8.7	Ο
92	Parallel search using transformation-ordering Lterative-Deepening-A*. International Journal of Intelligent Systems, 1993, 8, 855-873.	5.7	3
93	METHODS FOR COMBINATION OF EVIDENCE IN FUNCTION-BASED 3-D OBJECT RECOGNITION. International Journal of Pattern Recognition and Artificial Intelligence, 1993, 07, 573-594.	1.2	7
94	Experimental results from parallel backward-chained expert systems. International Journal of Intelligent Systems, 1992, 7, 505-512.	5.7	0