
Guilherme Lopes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6175459/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Natural variation of selenium in Brazil nuts and soils from the Amazon region. Chemosphere, 2017, 188, 650-658.	4.2	90
2	Selenium biofortification of wheat grain via foliar application and its effect on plant metabolism. Journal of Food Composition and Analysis, 2019, 81, 10-18.	1.9	90
3	A New Approach to Sampling Intact Fe Plaque Reveals Si-Induced Changes in Fe Mineral Composition and Shoot As in Rice. Environmental Science & amp; Technology, 2017, 51, 38-45.	4.6	76
4	Selenium behavior in the soil environment and its implication for human health. Ciencia E Agrotecnologia, 2017, 41, 605-615.	1.5	66
5	pXRF in tropical soils: Methodology, applications, achievements and challenges. Advances in Agronomy, 2021, , 1-62.	2.4	47
6	Increasing arsenic sorption on red mud by phosphogypsum addition. Journal of Hazardous Materials, 2013, 262, 1196-1203.	6.5	43
7	Adsorption-desorption reactions of selenium (VI) in tropical cultivated and uncultivated soils under Cerrado biome. Chemosphere, 2016, 164, 271-277.	4.2	40
8	Agronomic biofortification of rice (Oryza sativa L.) with selenium and its effect on element distributions in biofortified grains. Plant and Soil, 2019, 444, 331-342.	1.8	36
9	Rare earth elements (REY) sorption on soils of contrasting mineralogy and texture. Environment International, 2019, 128, 279-291.	4.8	34
10	Nutrient accumulation and availability and crop yields following long-term application of pig slurry in a Brazilian Cerrado soil. Nutrient Cycling in Agroecosystems, 2015, 101, 259-269.	1.1	27
11	Binding intensity and metal partitioning in soils affected by mining and smelting activities in Minas Gerais, Brazil. Environmental Science and Pollution Research, 2015, 22, 13442-13452.	2.7	23
12	Assessment of Trace Element Contents in Soils and Water from Cerrado Wetlands, Triângulo Mineiro Region. Revista Brasileira De Ciencia Do Solo, 0, 43, .	0.5	19
13	Competitive Sorption of Arsenate and Phosphate on Aluminum Mining By-product. Water, Air, and Soil Pollution, 2012, 223, 5433-5444.	1.1	18
14	Leguminous plants nodulated by selected strains of Cupriavidus necator grow in heavy metal contaminated soils amended with calcium silicate. World Journal of Microbiology and Biotechnology, 2013, 29, 2055-2066.	1.7	17
15	Natural variation of arsenic fractions in soils of the Brazilian Amazon. Science of the Total Environment, 2019, 687, 1219-1231.	3.9	17
16	Selenium application influenced selenium biofortification and physiological traits in water-deficit common bean plants. Crop and Pasture Science, 2022, 73, 44-55.	0.7	16
17	Caracterização de subproduto da indústria de alumÃnio e seu uso na retenção de cádmio e chumbo em sistemas monoelementares. Quimica Nova, 2009, 32, 868-874.	0.3	14
18	Effect of Equilibrium Solution Ionic Strength on the Adsorption of Zn, Cu, Cd, Pb, As, and P on Aluminum Mining By-Product. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	14

GUILHERME LOPES

#	Article	IF	CITATIONS
19	Subproduto da indústria de alumÃnio como amenizante de solos contaminados com cádmio e chumbo. Revista Brasileira De Ciencia Do Solo, 2008, 32, 2533-2546.	O.5	14
20	Fitorremediação de solos contaminados com arsênio (As) utilizando braquiária. Ciencia E Agrotecnologia, 2011, 35, 84-91.	1.5	12
21	PHOSPHORUS FRACTIONS AND AVAILABILITY IN A HAPLIC PLINTHOSOL UNDER NO-TILLAGE SYSTEM IN THE BRAZILIAN CERRADO. Ciencia E Agrotecnologia, 2015, 39, 216-224.	1.5	12
22	Beneficial use of industrial by-products for phytoremediation of an arsenic-rich soil from a gold mining area. International Journal of Phytoremediation, 2016, 18, 777-784.	1.7	12
23	Soil management and ionic strength on selenite retention in oxidic soils. Ciencia E Agrotecnologia, 2018, 42, 395-407.	1.5	12
24	Strategies for applying selenium for biofortification of rice in tropical soils and their effect on element accumulation and distribution in grains. Journal of Cereal Science, 2020, 96, 103125.	1.8	12
25	Selenium desorption in tropical soils by sulfate and phosphate, and selenium biofortification of Mombaça grass under increasing rates of phosphate fertilisation. Crop and Pasture Science, 2022, 73, 56-66.	0.7	12
26	Adsorption of Selenite in Tropical Soils as Affected by Soil Management, Ionic Strength, and Soil Properties. Journal of Soil Science and Plant Nutrition, 2020, 20, 139-148.	1.7	11
27	Combining zinc desorption with EXAFS speciation analysis to understand Zn mobility in mining and smelting affected soils in Minas Gerais, Brazil. Science of the Total Environment, 2021, 754, 142450.	3.9	11
28	Hydrothermally-altered feldspar as an environmentally-friendly technology to promote heavy metals immobilization: Batch studies and application in smelting-affected soils. Journal of Environmental Management, 2021, 291, 112711.	3.8	10
29	Mono- and Multielement Sorption of Trace Metals on Oxidic Industrial By-products. Water, Air, and Soil Pollution, 2012, 223, 1661-1670.	1.1	7
30	Soil amendments affect the potential of Gomphrena claussenii for phytoremediation of a Zn- and Cd-contaminated soil. Chemosphere, 2022, 288, 132508.	4.2	7
31	Unraveling the accumulation and localization of selenium and barium in Brazil nuts using spectroanalytical techniques. Journal of Food Composition and Analysis, 2022, 106, 104329.	1.9	6
32	Sorption of Cadmium, Lead, Arsenate, and Phosphate on Red Mud Combined with Phosphogypsum. International Journal of Environmental Research, 2021, 15, 427-444.	1.1	5
33	How sulfate content and soil depth affect the adsorption/desorption of selenate and selenite in tropical soils?. Revista Brasileira De Ciencia Do Solo, 2020, 44, .	0.5	5
34	Geochemistry of selenium, barium, and iodine in representative soils of the Brazilian Amazon rainforest. Science of the Total Environment, 2022, 828, 154426.	3.9	5
35	Phytoremediation of Arsenic-Contaminated Soils Amended with Red Mud Combined with Phosphogypsum. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	4
36	IONIC SPECIATION IN A DYSTROPHIC RED LATOSOL UNDER COFFEE CROP AND HIGH DOSES OF GYPSUM. Coffee Science, 2019, 14, 281.	0.5	3

GUILHERME LOPES

#	Article	IF	CITATIONS
37	Comparing the sorptive affinity of an aluminum-mining by-product for cationic and anionic pollutants. International Journal of Environmental Science and Technology, 2021, 18, 1237-1252.	1.8	2
38	Selenium application methods and rates for biofortification of common bean and their residual effects on Mombaça grass. Crop and Pasture Science, 2022, , .	0.7	2
39	Soil cultivation affects selenate adsorption in Cerrado soils in Brazil. , 2015, , 27-28.		Ο
40	Are all Brazil nuts selenium-rich?. , 2015, , 133-134.		0
41	lonic strength effects upon selenate adsorption in cultivated and uncultivated Brazilian soils. , 2015, , 25-26.		0
42	Selenium sorption in tropical agroecosystems. , 2015, , 23-24.		0
43	Selenium biofortification in grain crops in Brazil. , 2019, , 109-110.		0