Anna Morgan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/617540/publications.pdf Version: 2024-02-01

ΔΝΝΑ ΜΟΡΟΑΝ

#	Article	IF	CITATIONS
1	Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nature Genetics, 2018, 50, 1412-1425.	21.4	924
2	Rare and low-frequency coding variants alter human adult height. Nature, 2017, 542, 186-190.	27.8	544
3	Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney. Hypertension, 2017, 70, .	2.7	123
4	Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution. Nature Genetics, 2019, 51, 452-469.	21.4	89
5	Association study of genes related to bone formation and resorption and the extent of radiographic change in ankylosing spondylitis. Annals of the Rheumatic Diseases, 2015, 74, 1387-1393.	0.9	69
6	A novel P2RX2 mutation in an Italian family affected by autosomal dominant nonsyndromic hearing loss. Gene, 2014, 534, 236-239.	2.2	50
7	Hereditary hearing loss: a 96 gene targeted sequencing protocol reveals novel alleles in a series of Italian and Qatari patients. Gene, 2014, 542, 209-216.	2.2	48
8	A novel deletion mutation involving TMEM38B in a patient with autosomal recessive osteogenesis imperfecta. Gene, 2014, 545, 290-292.	2.2	38
9	Genome-wide association analysis on normal hearing function identifies <i>PCDH20</i> and <i>SLC28A3</i> as candidates for hearing function and loss. Human Molecular Genetics, 2015, 24, 5655-5664.	2.9	37
10	A Wars2 Mutant Mouse Model Displays OXPHOS Deficiencies and Activation of Tissue-Specific Stress Response Pathways. Cell Reports, 2018, 25, 3315-3328.e6.	6.4	35
11	Next generation sequencing in nonsyndromic intellectual disability: From a negative molecular karyotype to a possible causative mutation detection. American Journal of Medical Genetics, Part A, 2014, 164, 170-176.	1.2	34
12	Usher syndrome: An effective sequencing approach to establish a genetic and clinical diagnosis. Hearing Research, 2015, 320, 18-23.	2.0	26
13	Genomic Studies in a Large Cohort of Hearing Impaired Italian Patients Revealed Several New Alleles, a Rare Case of Uniparental Disomy (UPD) and the Importance to Search for Copy Number Variations. Frontiers in Genetics, 2018, 9, 681.	2.3	25
14	Targeted sequencing identifies novel variants involved in autosomal recessive hereditary hearing loss in Qatari families. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2017, 800-802, 29-36.	1.0	23
15	Mutations in <i>PLS1</i> , encoding fimbrin, cause autosomal dominant nonsyndromic hearing loss. Human Mutation, 2019, 40, 2286-2295.	2.5	23
16	Whole-genome sequencing reveals new insights into age-related hearing loss: cumulative effects, pleiotropy and the role of selection. European Journal of Human Genetics, 2018, 26, 1167-1179.	2.8	22
17	Next-generation sequencing identified SPATC1L as a possible candidate gene for both early-onset and age-related hearing loss. European Journal of Human Genetics, 2019, 27, 70-79.	2.8	22
18	Congenital hyperinsulinism: Clinical and molecular analysis of a large Italian cohort. Gene, 2013, 521, 160-165.	2.2	21

Anna Morgan

#	Article	IF	CITATIONS
19	TBL1Y: a new gene involved in syndromic hearing loss. European Journal of Human Genetics, 2019, 27, 466-474.	2.8	17
20	The p.Cys169Tyr variant of connexin 26 is not a polymorphism. Human Molecular Genetics, 2015, 24, 2641-2648.	2.9	14
21	Lights and Shadows in the Genetics of Syndromic and Non-Syndromic Hearing Loss in the Italian Population. Genes, 2020, 11, 1237.	2.4	13
22	Next Generation Sequencing and Animal Models Reveal SLC9A3R1 as a New Gene Involved in Human Age-Related Hearing Loss. Frontiers in Genetics, 2019, 10, 142.	2.3	11
23	Target sequencing approach intended to discover new mutations in non-syndromic intellectual disability. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2015, 781, 32-36.	1.0	10
24	New age-related hearing loss candidate genes in humans: an ongoing challenge. Gene, 2020, 742, 144561.	2.2	9
25	PSIP1/LEDGF: a new gene likely involved in sensorineural progressive hearing loss. Scientific Reports, 2016, 5, 18568.	3.3	7
26	Next generation sequencing study in a cohort of Italian patients with syndromic hearing loss. Hearing Research, 2019, 381, 107769.	2.0	7
27	Assessment of the Olfactory Function in Italian Patients with Type 3 von Willebrand Disease Caused by a Homozygous 253 Kb Deletion Involving VWF and TMEM16B/ANO2. PLoS ONE, 2015, 10, e0116483.	2.5	7
28	Natural human knockouts and Mendelian disorders: deep phenotyping in Italian isolates. European Journal of Human Genetics, 2021, 29, 1272-1281.	2.8	6
29	Variants in <i>USP48</i> encoding ubiquitin hydrolase are associated with autosomal dominant non-syndromic hereditary hearing loss. Human Molecular Genetics, 2021, 30, 1785-1796.	2.9	6
30	Molecular testing for the study of non-syndromic hearing loss. Hearing, Balance and Communication, 2020, 18, 270-277.	0.4	5
31	<i>SLC12A2</i> : a new gene associated with autosomal dominant Non-Syndromic hearing loss in humans. Hearing, Balance and Communication, 2020, 18, 149-151.	0.4	5
32	Pendred Syndrome, or Not Pendred Syndrome? That Is the Question. Genes, 2021, 12, 1569.	2.4	5
33	Two Novel <i>COH1</i> Mutations in an Italian Patient with Cohen Syndrome. Molecular Syndromology, 2012, 3, 30-33.	0.8	4
34	The Role of Knockout Olfactory Receptor Genes in Odor Discrimination. Genes, 2021, 12, 631.	2.4	3
35	Non-Syndromic Autosomal Dominant Hearing Loss: The First Italian Family Carrying a Mutation in the NCOA3 Gene. Genes, 2021, 12, 1043.	2.4	3
36	Hearing loss and brain abnormalities due to pathogenic mutations in <i>ADGRV1</i> gene: a case report. Hearing, Balance and Communication, 2020, 18, 196-198.	0.4	2

Anna Morgan

#	Article	IF	CITATIONS
37	Hearing loss. , 2021, , 305-322.		2
38	Sensory Capacities and Eating Behavior: Intriguing Results from a Large Cohort of Italian Individuals. Foods, 2022, 11, 735.	4.3	2
39	There Is More Than Meets the Eye: Identification of Dual Molecular Diagnosis in Patients Affected by Hearing Loss. Biomedicines, 2022, 10, 12.	3.2	2
40	Genetic Dissection of Temperament Personality Traits in Italian Isolates. Genes, 2022, 13, 4.	2.4	2
41	A new case of TAR syndrome confirms the importance of noncoding variants in the etiopathogenesis of the disease. Human Mutation, 2021, 42, 213-215.	2.5	1
42	Non-Syndromic Sensorineural Prelingual and Postlingual Hearing Loss due to COL11A1 Gene Mutation. Journal of International Advanced Otology, 2021, 17, 81-83.	1.0	1
43	Hearing Function: Identification of New Candidate Genes Further Explaining the Complexity of This Sensory Ability. Genes, 2021, 12, 1228.	2.4	1
44	Targeted Next-Generation Sequencing for Molecular Diagnosis of Non-Syndromic Hearing Loss in Qatar. , 2016, , .		0