List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6175289/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disruption of ERâ€mitochondria tethering and signalling in <i>C9orf72</i> â€associated amyotrophic lateral sclerosis and frontotemporal dementia. Aging Cell, 2022, 21, e13549.	3.0	30
2	Targeting ER-Mitochondria Signaling as a Therapeutic Target for Frontotemporal Dementia and Related Amyotrophic Lateral Sclerosis. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	9
3	Oxysterols present in Alzheimer's disease brain induce synaptotoxicity by activating astrocytes: A major role for lipocalin-2. Redox Biology, 2021, 39, 101837.	3.9	35
4	Tau in the gut, does it really matter?. Journal of Neurochemistry, 2021, 158, 94-104.	2.1	11
5	Investigating the nonâ€cell autonomous role of glial chaperones in Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, e058572.	0.4	Ο
6	HCN channelopathy couples diseaseâ€associated tau to synaptic dysfunction. Alzheimer's and Dementia, 2021, 17, e058346.	0.4	1
7	Autophagy and lysosomal defects in cells expressing diseaseâ€associated tau. Alzheimer's and Dementia, 2021, 17, e058299.	0.4	1
8	Astrocytic C–X–C motif chemokine ligand-1 mediates β-amyloid-induced synaptotoxicity. Journal of Neuroinflammation, 2021, 18, 306.	3.1	16
9	Defects in the autophagy lysosomal pathway in a cell model of diseaseâ€associated tau. Alzheimer's and Dementia, 2021, 17, e051303.	0.4	0
10	Investigating astrocytes as mediators of tau spread Alzheimer's and Dementia, 2021, 17 Suppl 3, e051676.	0.4	0
11	Investigating P2X7R-mediated inflammatory signalling in Alzheimer's disease Alzheimer's and Dementia, 2021, 17 Suppl 3, e052956.	0.4	0
12	Considerations for future tau-targeted therapeutics: can they deliver?. Expert Opinion on Drug Discovery, 2020, 15, 265-267.	2.5	11
13	Minocycline at 2 Different Dosages vs Placebo for Patients With Mild Alzheimer Disease. JAMA Neurology, 2020, 77, 164.	4.5	113
14	Astrocytes in Tauopathies. Frontiers in Neurology, 2020, 11, 572850.	1.1	39
15	Tau accumulates in Crohn's disease gut. FASEB Journal, 2020, 34, 9285-9296.	0.2	17
16	Disruption of endoplasmic reticulum-mitochondria tethering proteins in post-mortem Alzheimer's disease brain. Neurobiology of Disease, 2020, 143, 105020.	2.1	41
17	Upregulation of enteric alpha-synuclein as a possible link between inflammatory bowel disease and Parkinson's disease. Gut, 2020, 70, gutjnl-2020-323482.	6.1	2
18	Investigating P2X7Râ€mediated inflammatory signalling in Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e047122.	0.4	0

#	Article	IF	CITATIONS
19	Investigating the role that astrocytes play in mediating changes in synaptic health in Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e047669.	0.4	0
20	Bridging integrator 1 protein loss in Alzheimer's disease promotes synaptic tau accumulation and disrupts tau release. Brain Communications, 2020, 2, .	1.5	18
21	Minocycline 200 mg or 400 mg versus placebo for mild Alzheimer's disease: the MADE Phase II, three RCT. Efficacy and Mechanism Evaluation, 2020, 7, 1-62.	e-arm 0.9	10
22	Ammon's Horn 2 (CA2) of the Hippocampus: A Long-Known Region with a New Potential Role in Neurodegeneration. Neuroscientist, 2019, 25, 167-180.	2.6	37
23	Tackling gaps in developing lifeâ€changing treatments for dementia. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2019, 5, 241-253.	1.8	17
24	LMTK2 binds to kinesin light chains to mediate anterograde axonal transport of cdk5/p35 and LMTK2 levels are reduced in Alzheimer's disease brains. Acta Neuropathologica Communications, 2019, 7, 73.	2.4	21
25	The VAPB-PTPIP51 endoplasmic reticulum-mitochondria tethering proteins are present in neuronal synapses and regulate synaptic activity. Acta Neuropathologica Communications, 2019, 7, 35.	2.4	88
26	Sleep well to slow Alzheimer's progression?. Science, 2019, 363, 813-814.	6.0	17
27	Kinesin light chain-1 serine-460 phosphorylation is altered in Alzheimer's disease and regulates axonal transport and processing of the amyloid precursor protein. Acta Neuropathologica Communications, 2019, 7, 200.	2.4	26
28	A pathogenic tau fragment compromises microtubules, disrupts insulin signaling and induces the unfolded protein response. Acta Neuropathologica Communications, 2019, 7, 2.	2.4	16
29	Synaptic Localisation of Tau. Advances in Experimental Medicine and Biology, 2019, 1184, 105-112.	0.8	16
30	Preparation of organotypic brain slice cultures for the study of Alzheimer's disease. F1000Research, 2018, 7, 592.	0.8	14
31	Characterisation of tau in the human and rodent enteric nervous system under physiological conditions and in tauopathy. Acta Neuropathologica Communications, 2018, 6, 65.	2.4	32
32	A new TAO kinase inhibitor reduces tau phosphorylation at sites associated with neurodegeneration in human tauopathies. Acta Neuropathologica Communications, 2018, 6, 37.	2.4	44
33	Preparation of organotypic brain slice cultures for the study of Alzheimer's disease. F1000Research, 2018, 7, 592.	0.8	31
34	The ER-Mitochondria Tethering Complex VAPB-PTPIP51 Regulates Autophagy. Current Biology, 2017, 27, 371-385.	1.8	287
35	α-Synuclein binds to the ER–mitochondria tethering protein VAPB to disrupt Ca2+ homeostasis and mitochondrial ATP production. Acta Neuropathologica, 2017, 134, 129-149.	3.9	262
36	Roles of tau protein in health and disease. Acta Neuropathologica, 2017, 133, 665-704.	3.9	639

#	Article	IF	CITATIONS
37	Membrane association and release of wild-type and pathological tau from organotypic brain slice cultures. Cell Death and Disease, 2017, 8, e2671-e2671.	2.7	50
38	Inhibition of glycogen synthase kinase-3 by BTA-EC4 reduces tau abnormalities in an organotypic brain slice culture model of Alzheimer's disease. Scientific Reports, 2017, 7, 7434.	1.6	20
39	[P1–223]: FUNCTIONAL ROLES FOR TAOK KINASES IN THE DEVELOPMENT OF TAU PATHOLOGY IN ALZHEIMER' DISEASE. Alzheimer's and Dementia, 2017, 13, P328.	^S 0.4	0
40	[F3–07–03]: ACTIVITYâ€DEPENDENT TAU RELEASE: IMPLICATIONS FOR TAU PROPAGATION. Alzheimer's and Dementia, 2017, 13, P888.	0.4	0
41	Direct Keap1-Nrf2 disruption as a potential therapeutic target for Alzheimer's disease. PLoS Genetics, 2017, 13, e1006593.	1.5	102
42	<pre><scp>ALS</scp> / <scp>FTD</scp> â€associated <scp>FUS</scp> activates <scp>GSK</scp> â€3β to disrupt the <scp>VAPB</scp> – <scp>PTPIP</scp> 51 interaction and <scp>ER</scp> –mitochondria associations. EMBO Reports, 2016, 17, 1326-1342.</pre>	2.0	201
43	Critical residues involved in tau binding to fyn: implications for tau phosphorylation in Alzheimer's disease. Acta Neuropathologica Communications, 2016, 4, 49.	2.4	60
44	Alzheimer-related decrease in CYFIP2 links amyloid production to tau hyperphosphorylation and memory loss. Brain, 2016, 139, 2751-2765.	3.7	52
45	P1â€155: Postâ€Mortem Brain Tissue Characterisation of Inflammatory and Pathological Hallmarks of Alzheimer's Disease During Disease Progression. Alzheimer's and Dementia, 2016, 12, P462.	0.4	0
46	Upregulation of calpain activity precedes tau phosphorylation and loss of synaptic proteins in Alzheimer's disease brain. Acta Neuropathologica Communications, 2016, 4, 34.	2.4	100
47	Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate. Brain, 2016, 139, 2290-2306.	3.7	43
48	P3-054: The amyloid-binding agent bta-eg4 reduces pathological tau species in a novel organotypic 3xTg-AD brain slice culture model that recapitulates key in vivo degenerative phenotypes. , 2015, 11, P639-P639.		0
49	Evidence that the presynaptic vesicle protein CSPalpha is a key player in synaptic degeneration and protection in Alzheimer's disease. Molecular Brain, 2015, 8, 6.	1.3	34
50	Clusterin regulates β-amyloid toxicity via Dickkopf-1-driven induction of the wnt–PCP–JNK pathway. Molecular Psychiatry, 2014, 19, 88-98.	4.1	197
51	Calpain cleavage and inactivation of the sodium calcium exchangerâ€3 occur downstream of <scp>A</scp> l² in <scp>A</scp> lzheimer's disease. Aging Cell, 2014, 13, 49-59.	3.0	38
52	Intracellular and Extracellular Roles for Tau in Neurodegenerative Disease. Journal of Alzheimer's Disease, 2014, 40, S37-S45.	1.2	45
53	A role for tau at the synapse in Alzheimer's disease pathogenesis. Neuropharmacology, 2014, 76, 1-8.	2.0	160
54	Astrocytes and neuroinflammation in Alzheimer's disease. Biochemical Society Transactions, 2014, 42, 1321-1325.	1.6	76

#	Article	IF	CITATIONS
55	P1-115: IDENTIFICATION OF THE BINDING SITE BETWEEN TAU AND FYN: CONSEQUENCES FOR TAU RELEASE?. , 2014, 10, P343-P343.		0
56	P1-116: ASTROCYTE ACTIVATION INFLUENCES THE DEVELOPMENT OF TAUOPATHY. , 2014, 10, P343-P343.		0
57	Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Reports, 2013, 14, 389-394.	2.0	510
58	Tau phosphorylation affects its axonal transport and degradation. Neurobiology of Aging, 2013, 34, 2146-2157.	1.5	136
59	Loss of c-Jun N-terminal kinase-interacting protein-1 does not affect axonal transport of the amyloid precursor protein or Al² production. Human Molecular Genetics, 2013, 22, 4646-4652.	1.4	19
60	Prostate-derived Sterile 20-like Kinases (PSKs/TAOKs) Phosphorylate Tau Protein and Are Activated in Tangle-bearing Neurons in Alzheimer Disease. Journal of Biological Chemistry, 2013, 288, 15418-15429.	1.6	49
61	The Importance of Tau Phosphorylation for Neurodegenerative Diseases. Frontiers in Neurology, 2013, 4, 83.	1.1	312
62	Calsyntenin-1 mediates axonal transport of the amyloid precursor protein and regulates AÂ production. Human Molecular Genetics, 2012, 21, 2845-2854.	1.4	100
63	Dynamic association of tau with neuronal membranes is regulated by phosphorylation. Neurobiology of Aging, 2012, 33, 431.e27-431.e38.	1.5	117
64	Neurodegeneration as an RNA disorder. Progress in Neurobiology, 2012, 99, 293-315.	2.8	52
65	Functional Implications of Glycogen Synthase Kinase-3-Mediated Tau Phosphorylation. International Journal of Alzheimer's Disease, 2011, 2011, 1-11.	1.1	82
66	Tyrosine phosphorylation of tau regulates its interactions with Fyn SH2 domains, but not SH3 domains, altering the cellular localization of tau. FEBS Journal, 2011, 278, 2927-2937.	2.2	78
67	Advances in tau-based drug discovery. Expert Opinion on Drug Discovery, 2011, 6, 797-810.	2.5	39
68	Astrocytes are important mediators of $A\hat{l}^2$ -induced neurotoxicity and tau phosphorylation in primary culture. Cell Death and Disease, 2011, 2, e167-e167.	2.7	304
69	Challenges in neurodegeneration research. Frontiers in Psychiatry, 2010, 1, 7.	1.3	20
70	Anti-Inflammatory Impact of Minocycline in a Mouse Model of Tauopathy. Frontiers in Psychiatry, 2010, 1, 136.	1.3	91
71	Transgenic Mouse Models of Tauopathy in Drug Discovery. CNS and Neurological Disorders - Drug Targets, 2010, 9, 403-428.	0.8	36
72	Minocycline as a potential therapeutic agent in neurodegenerative disorders characterized by protein misfolding. Prion, 2009, 3, 78-83.	0.9	59

#	Article	IF	CITATIONS
73	Linking Amyloid and Tau Pathology in Alzheimer's Disease: The Role of Membrane Cholesterol in AÂ-Mediated Tau Toxicity. Journal of Neuroscience, 2009, 29, 9665-9667.	1.7	30
74	Minocycline reduces the development of abnormal tau species in models of Alzheimer's disease. FASEB Journal, 2009, 23, 739-750.	0.2	113
75	Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends in Molecular Medicine, 2009, 15, 112-119.	3.5	778
76	Mediators of tau phosphorylation in the pathogenesis of Alzheimer's disease. Expert Review of Neurotherapeutics, 2009, 9, 1647-1666.	1.4	82
77	The Microtubule-Associated Protein Tau is Also Phosphorylated on Tyrosine. Journal of Alzheimer's Disease, 2009, 18, 1-9.	1.2	75
78	Collapsin response mediator proteinâ€2 hyperphosphorylation is an early event in Alzheimer's disease progression. Journal of Neurochemistry, 2007, 103, 1132-1144.	2.1	158
79	Kinase activities increase during the development of tauopathy in htau mice. Journal of Neurochemistry, 2007, 103, 2256-2267.	2.1	69
80	RNA and protein-dependent mechanisms in tauopathies: consequences for therapeutic strategies. Cellular and Molecular Life Sciences, 2007, 64, 1701-1714.	2.4	32
81	Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6990-6995.	3.3	649
82	Molecular motors implicated in the axonal transport of tau and α-synuclein. Journal of Cell Science, 2005, 118, 4645-4654.	1.2	141
83	Tyrosine 394 Is Phosphorylated in Alzheimer's Paired Helical Filament Tau and in Fetal Tau with c-Abl as the Candidate Tyrosine Kinase. Journal of Neuroscience, 2005, 25, 6584-6593.	1.7	168
84	P1-293 Rapid lipid RAFT reorganisation and tyrosine phosphorylation of lipid RAFT components in response to amyloid-B peptide-treatment of primary neuronal cultures: involvement of FYN. Neurobiology of Aging, 2004, 25, S179.	1.5	0
85	Co-localization of cholesterol, apolipoprotein E and fibrillar Aβ in amyloid plaques. Molecular Brain Research, 2003, 110, 119-125.	2.5	108
86	Cdk5 Is a Key Factor in Tau Aggregation and Tangle Formation In Vivo. Neuron, 2003, 38, 555-565.	3.8	474
87	Presenilin Redistribution Associated with Aberrant Cholesterol Transport Enhances β-Amyloid Production <i>In Vivo</i> . Journal of Neuroscience, 2003, 23, 5645-5649.	1.7	170
88	Organotypic Slice Cultures from Transgenic Mice as Disease Model Systems. Journal of Molecular Neuroscience, 2002, 19, 317-320.	1.1	32
89	Cytokine expression during allergen-induced late nasal responses: IL-4 and IL-5 mRNA is expressed early (at 6 h) predominantly by eosinophils. Clinical and Experimental Allergy, 2000, 30, 1709-1716.	1.4	37
90	Long-Term Clinical Efficacy of Grass-Pollen Immunotherapy. New England Journal of Medicine, 1999, 341, 468-475.	13.9	1,256