Federico Da Settimo Passetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6174966/publications.pdf

Version: 2024-02-01

170 papers

5,105 citations

71102 41 h-index 138484 58 g-index

176 all docs

176 docs citations

176 times ranked 5704 citing authors

#	Article	IF	CITATIONS
1	Cancer Immunotherapy: An Overview on Small Molecules as Inhibitors of the Immune Checkpoint PD-1/PD-L1 (2015-2021). Mini-Reviews in Medicinal Chemistry, 2022, 22, .	2.4	3
2	Essential Principles and Recent Progress in the Development of TSPO PET Ligands for Neuroinflammation Imaging. Current Medicinal Chemistry, 2022, 29, 4862-4890.	2.4	9
3	Carbonic Anhydrase Activators for Neurodegeneration: An Overview. Molecules, 2022, 27, 2544.	3.8	17
4	Translocator Protein 18-kDa: a promising target to treat neuroinflammation-related degenerative diseases. Current Medicinal Chemistry, 2022, 29, .	2.4	4
5	Multiple Topoisomerase I (Topol), Topoisomerase II (Topoll) and Tyrosyl-DNA Phosphodiesterase (TDP) inhibitors in the development of anticancer drugs. European Journal of Pharmaceutical Sciences, 2021, 156, 105594.	4.0	31
6	Novel positive allosteric modulators of A _{2B} adenosine receptor acting as bone mineralisation promoters. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 287-295.	5. 2	12
7	An update into the medicinal chemistry of translocator protein (TSPO) ligands. European Journal of Medicinal Chemistry, 2021, 209, 112924.	5 . 5	31
8	Two mixed valence diruthenium(<scp>ii</scp> , <scp>iii</scp>) isomeric complexes show different anticancer properties. Dalton Transactions, 2021, 50, 9643-9647.	3.3	28
9	Carbonic anhydrase activation profile of indole-based derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 1783-1797.	5 . 2	3
10	Tetrahydroquinazole-based secondary sulphonamides as carbonic anhydrase inhibitors: synthesis, biological evaluation against isoforms I, II, IV, and IX, and computational studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 1874-1883.	5.2	4
11	De novo Neurosteroidogenesis in Human Microglia: Involvement of the 18 kDa Translocator Protein. International Journal of Molecular Sciences, 2021, 22, 3115.	4.1	15
12	Allosterism vs. Orthosterism: Recent Findings and Future Perspectives on A2B AR Physio-Pathological Implications. Frontiers in Pharmacology, 2021, 12, 652121.	3 . 5	5
13	The Alpha Keto Amide Moiety as a Privileged Motif in Medicinal Chemistry: Current Insights and Emerging Opportunities. Journal of Medicinal Chemistry, 2021, 64, 3508-3545.	6.4	51
14	Inhibition studies on carbonic anhydrase isoforms I, II, IV and IX with N-arylsubstituted secondary sulfonamides featuring a bicyclic tetrahydroindazole scaffold. European Journal of Medicinal Chemistry, 2021, 220, 113490.	5 . 5	9
15	Drug Repurposing Meets DNA Independent Pathways: Targeting Alternative Substrates for Anticancer Therapy. Current Topics in Medicinal Chemistry, 2021, 21, 2767-2770.	2.1	0
16	Synthesis and Screening in Mice of Fluorine-Containing PET Radioligands for TSPO: Discovery of a Promising ¹⁸ F-Labeled Ligand. Journal of Medicinal Chemistry, 2021, 64, 16731-16745.	6.4	15
17	Enriching the Arsenal of Pharmacological Tools against MICAL2. Molecules, 2021, 26, 7519.	3.8	1
18	A mixed-valence diruthenium(ii,iii) complex endowed with high stability: from experimental evidence to theoretical interpretation. Dalton Transactions, 2020, 49, 14520-14527.	3.3	25

#	Article	IF	CITATIONS
19	Exploiting the Indole Scaffold to Design Compounds Binding to Different Pharmacological Targets. Molecules, 2020, 25, 2331.	3.8	16
20	Targeting the KRAS oncogene: Synthesis, physicochemical and biological evaluation of novel G-Quadruplex DNA binders. European Journal of Pharmaceutical Sciences, 2020, 149, 105337.	4.0	15
21	Novel 2-substituted-benzimidazole-6-sulfonamides as carbonic anhydrase inhibitors: synthesis, biological evaluation against isoforms I, II, IX and XII and molecular docking studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 1697-1710.	5.2	28
22	Microglial Pro-Inflammatory and Anti-Inflammatory Phenotypes Are Modulated by Translocator Protein Activation. International Journal of Molecular Sciences, 2019, 20, 4467.	4.1	54
23	Discovery of Pyrido $[3\hat{a}\in^2,2\hat{a}\in^2:5,6]$ thiopyrano $[4,3-\langle i\rangle d\langle i\rangle]$ pyrimidine-Based Antiproliferative Multikinase Inhibitors. ACS Medicinal Chemistry Letters, 2019, 10, 457-462.	2.8	3
24	Long lasting inhibition of Mdm2-p53 interaction potentiates mesenchymal stem cell differentiation into osteoblasts. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 737-749.	4.1	10
25	Unbinding of Translocator Protein 18 kDa (TSPO) Ligands: From in Vitro Residence Time to in Vivo Efficacy via in Silico Simulations. ACS Chemical Neuroscience, 2019, 10, 3805-3814.	3.5	22
26	Soyasaponins from Zolfino bean as aldose reductase differential inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 350-360.	5.2	11
27	Benzothiopyranoindole- and pyridothiopyranoindole-based antiproliferative agents targeting topoisomerases. European Journal of Medicinal Chemistry, 2019, 165, 46-58.	5.5	5
28	Challenging clinically unresponsive medullary thyroid cancer: Discovery and pharmacological activity of novel RET inhibitors. European Journal of Medicinal Chemistry, 2018, 150, 491-505.	5.5	13
29	New insights in the structure-activity relationships of 2-phenylamino-substituted benzothiopyrano[4,3-d]pyrimidines as kinase inhibitors. European Journal of Medicinal Chemistry, 2018, 150, 446-456.	5.5	7
30	Bax Activation Blocks Self-Renewal and Induces Apoptosis of Human Glioblastoma Stem Cells. ACS Chemical Neuroscience, 2018, 9, 85-99.	3.5	22
31	Novel fluorescent triazinobenzimidazole derivatives as probes for labelling human A1 and A2B adenosine receptor subtypes. Bioorganic and Medicinal Chemistry, 2018, 26, 5885-5895.	3.0	6
32	Simultaneous Targeting of RGD-Integrins and Dual Murine Double Minute Proteins in Glioblastoma Multiforme. Journal of Medicinal Chemistry, 2018, 61, 4791-4809.	6.4	22
33	Acid Derivatives of Pyrazolo[1,5-a]pyrimidine as Aldose Reductase Differential Inhibitors. Cell Chemical Biology, 2018, 25, 1414-1418.e3.	5.2	16
34	4-Substituted Benzenesulfonamides Incorporating Bi/Tricyclic Moieties Act as Potent and Isoform-Selective Carbonic Anhydrase II/IX Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 5765-5770.	6.4	18
35	Residence Time, a New parameter to Predict Neurosteroidogenic Efficacy of Translocator Protein (TSPO) Ligands: the Case Study of <i>N</i> NNNerviewed to Study of <i>Nerviewed to Study of Case Study of <i>Nevviewed to Study of Case Study of Case</i></i></i></i></i></i>	n 3, 2	9
36	The Anxiolytic Etifoxine Binds to TSPO Ro5-4864 Binding Site with Long Residence Time Showing a High Neurosteroidogenic Activity. ACS Chemical Neuroscience, 2017, 8, 1448-1454.	3.5	33

#	Article	lF	CITATIONS
37	Computer-Aided Identification and Lead Optimization of Dual Murine Double Minute 2 and 4 Binders: Structure–Activity Relationship Studies and Pharmacological Activity. Journal of Medicinal Chemistry, 2017, 60, 8115-8130.	6.4	19
38	Exploiting the 4-Phenylquinazoline Scaffold for the Development of High Affinity Fluorescent Probes for the Translocator Protein (TSPO). Journal of Medicinal Chemistry, 2017, 60, 7897-7909.	6.4	13
39	Iminothioethers as Hydrogen Sulfide Donors: From the Gasotransmitter Release to the Vascular Effects. Journal of Medicinal Chemistry, 2017, 60, 7512-7523.	6.4	48
40	$^{\circ}$ (sup>11 $^{\circ}$) C-ER176, a Radioligand for 18-kDa Translocator Protein, Has Adequate Sensitivity to Robustly Image All Three Affinity Genotypes in Human Brain. Journal of Nuclear Medicine, 2017, 58, 320-325.	5.0	146
41	TSPO PIGA Ligands Promote Neurosteroidogenesis and Human Astrocyte Well-Being. International Journal of Molecular Sciences, 2016, 17, 1028.	4.1	32
42	4-amino-6-alkyloxy-2-alkylthiopyrimidine derivatives as novel non-nucleoside agonists for the adenosine Alreceptor. Chemical Biology and Drug Design, 2016, 88, 724-729.	3.2	7
43	Long Residence Time at the Neurosteroidogenic 18 kDa Translocator Protein Characterizes the Anxiolytic Ligand XBD173. ACS Chemical Neuroscience, 2016, 7, 1041-1046.	3.5	13
44	TSPO ligand residence time: a new parameter to predict compound neurosteroidogenic efficacy. Scientific Reports, 2016, 6, 18164.	3.3	53
45	Lead Optimization of 2-Phenylindolylglyoxylyldipeptide Murine Double Minute (MDM)2/Translocator Protein (TSPO) Dual Inhibitors for the Treatment of Gliomas. Journal of Medicinal Chemistry, 2016, 59, 4526-4538.	6.4	28
46	Toward PET imaging of A2B adenosine receptors: a carbon-11 labeled triazinobenzimidazole tracer. Nuclear Medicine and Biology, 2016, 43, 309-317.	0.6	10
47	Enantiomeric 4â€Acylaminoâ€6â€alkyloxyâ€2 Alkylthiopyrimidines As Potential A ₃ Adenosine Receptor Antagonists: HPLC Chiral Resolution and Absolute Configuration Assignment by a Full Set of Chiroptical Spectroscopy. Chirality, 2016, 28, 434-440.	2.6	13
48	1,2-Benzisothiazole Derivatives Bearing 4-, 5-, or 6-Alkyl/arylcarboxamide Moieties Inhibit Carbonic Anhydrase Isoform IX (CAIX) and Cell Proliferation under Hypoxic Conditions. Journal of Medicinal Chemistry, 2016, 59, 6547-6552.	6.4	20
49	TSPO-ligands prevent oxidative damage and inflammatory response in C6 glioma cells by neurosteroid synthesis. European Journal of Pharmaceutical Sciences, 2016, 88, 124-131.	4.0	36
50	CLM29 and CLM24, pyrazolopyrimidine derivatives, have antitumoral activity in vitro in anaplastic thyroid cancer, with or without BRAF mutation. Endocrine, 2016, 53, 136-144.	2.3	12
51	Sulfonamides incorporating heteropolycyclic scaffolds show potent inhibitory action against carbonic anhydrase isoforms I, II, IX and XII. Bioorganic and Medicinal Chemistry, 2016, 24, 921-927.	3.0	18
52	Long lasting MDM2/Translocator protein modulator: a new strategy for irreversible apoptosis of human glioblastoma cells. Oncotarget, 2016, 7, 7866-7884.	1.8	17
53	Targeting the 18-kDa translocator protein: recent perspectives for neuroprotection. Biochemical Society Transactions, 2015, 43, 559-565.	3.4	32
54	TSPO ligand residence time influences human glioblastoma multiforme cell death/life balance. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 383-398.	4.9	22

#	Article	IF	CITATIONS
55	Deepening the Topology of the Translocator Protein Binding Site by Novel $\langle i \rangle N \langle i \rangle, \langle i \rangle N \langle i \rangle$ Dialkyl-2-arylindol-3-ylglyoxylamides. Journal of Medicinal Chemistry, 2015, 58, 6081-6092.	6.4	31
56	Investigation of new 2-aryl substituted Benzothiopyrano [4,3-d] pyrimidines as kinase inhibitors targeting vascular endothelial growth factor receptor 2. European Journal of Medicinal Chemistry, 2015, 103, 29-43.	5.5	17
57	Synthetic analogues of flavonoids with improved activity against platelet activation and aggregation as novel prototypes of food supplements. Food Chemistry, 2015, 175, 494-499.	8.2	15
58	CLM29, a multi-target pyrazolopyrimidine derivative, has anti-neoplastic activity in medullary thyroid cancer in vitro and in vivo. Molecular and Cellular Endocrinology, 2014, 393, 56-64.	3.2	21
59	CLM3, a Multitarget Tyrosine Kinase Inhibitor With Antiangiogenic Properties, Is Active Against Primary Anaplastic Thyroid Cancer In Vitro and In Vivo. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E572-E581.	3.6	46
60	A novel 2,3-diphenyl-4H-pyrido[1,2-a]pyrimidin-4-one derivative inhibits endothelial cell dysfunction and smooth muscle cell proliferation/activation. European Journal of Medicinal Chemistry, 2014, 72, 102-109.	5.5	18
61	Genetic analysis of <scp>dTSPO</scp> , an outer mitochondrial membrane protein, reveals its functions in apoptosis, longevity, and Al̂²42â€induced neurodegeneration. Aging Cell, 2014, 13, 507-518.	6.7	60
62	Antineoplastic activity of the multitarget tyrosine kinase inhibitors CLM3 and CLM94 in medullary thyroid cancer inÂvitro. Surgery, 2014, 156, 1167-1176.	1.9	17
63	Structure–Activity Relationship Refinement and Further Assessment of 4-Phenylquinazoline-2-carboxamide Translocator Protein Ligands as Antiproliferative Agents in Human Glioblastoma Tumors. Journal of Medicinal Chemistry, 2014, 57, 2413-2428.	6.4	41
64	p53 Functional Inhibitors Behaving Like Pifithrin- \hat{l}^2 Counteract the Alzheimer Peptide Non- \hat{l}^2 -amyloid Component Effects in Human SH-SY5Y Cells. ACS Chemical Neuroscience, 2014, 5, 390-399.	3.5	34
65	Synthesis and Evaluation of Translocator 18 kDa Protein (TSPO) Positron Emission Tomography (PET) Radioligands with Low Binding Sensitivity to Human Single Nucleotide Polymorphism rs6971. ACS Chemical Neuroscience, 2014, 5, 963-971.	3.5	91
66	Osteoblast differentiation and survival: A role for A2B adenosine receptor allosteric modulators. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2957-2966.	4.1	34
67	Allosteric modulators of human A2B adenosine receptor. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1194-1203.	2.4	27
68	Structure-Based Optimization of Tyrosine Kinase Inhibitor CLM3 . Design, Synthesis, Functional Evaluation, and Molecular Modeling Studies Journal of Medicinal Chemistry, 2014, 57, 1225-1235.	6.4	18
69	Apoptosis Therapy in Cancer: The First Single-molecule Co-activating p53 and the Translocator Protein in Glioblastoma. Scientific Reports, 2014, 4, 4749.	3.3	62
70	Phenylpyrazolo[1,5- <i>a</i>)quinazolin-5(4 <i>H</i>)-one: A Suitable Scaffold for the Development of Noncamptothecin Topoisomerase I (Top1) Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 7458-7462.	6.4	43
71	Arylthioamides as H ₂ S Donors: <scp>I</scp> -Cysteine-Activated Releasing Properties and Vascular Effects in Vitro and in Vivo. ACS Medicinal Chemistry Letters, 2013, 4, 904-908.	2.8	144
72	Modulation of A2B adenosine receptor by 1-Benzyl-3-ketoindole derivatives. European Journal of Medicinal Chemistry, 2013, 69, 331-337.	5.5	28

#	Article	IF	CITATIONS
73	Design, synthesis and biological evaluation of new classes of thieno[3,2-d]pyrimidinone and thieno[1,2,3]triazine as inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2). European Journal of Medicinal Chemistry, 2013, 63, 765-781.	5. 5	46
74	Revisiting a Receptor-Based Pharmacophore Hypothesis for Human A _{2A} Adenosine Receptor Antagonists. Journal of Chemical Information and Modeling, 2013, 53, 1620-1637.	5.4	16
75	Arylsulfonamide inhibitors of aggrecanases as potential therapeutic agents for osteoarthritis: Synthesis and biological evaluation. European Journal of Medicinal Chemistry, 2013, 62, 379-394.	5.5	38
76	A New Approach to Control the Enigmatic Activity of Aldose Reductase. PLoS ONE, 2013, 8, e74076.	2.5	39
77	Editorial [Hot Topic:The Indolylglyoxylamide Scaffold as an Useful Tool to Obtain Anxiolytic Agents (Guest Editors: Sabrina Taliani & Federico Da Settimo)]. Current Topics in Medicinal Chemistry, 2012, 12, 236-237.	2.1	0
78	Medicinal Chemistry of Indolylglyoxylamide TSPO High Affinity Ligands with Anxiolytic-Like Effects. Current Topics in Medicinal Chemistry, 2012, 12, 333-351.	2.1	6
79	Adenosine Deaminase in the Modulation of Immune System and its Potential as a Novel Target for Treatment of Inflammatory Disorders. Current Drug Targets, 2012, 13, 842-862.	2.1	128
80	Geometrically Constrained Derivatives of Indolylglyoxylamides as Ligands Binding the GABAA/BzR Complex. Current Topics in Medicinal Chemistry, 2012, 12, 312-320.	2.1	1
81	Medicinal Chemistry of Indolylglyoxylamide GABAA/BzR High Affinity Ligands: Identification of Novel Anxiolytic/Non Sedative Agents. Current Topics in Medicinal Chemistry, 2012, 12, 286-311.	2.1	8
82	Benzofuroxane Derivatives as Multi-Effective Agents for the Treatment of Cardiovascular Diabetic Complications. Synthesis, Functional Evaluation, and Molecular Modeling Studies. Journal of Medicinal Chemistry, 2012, 55, 10523-10531.	6.4	24
83	Hydrogen Sulphide: Biopharmacological Roles in the Cardiovascular System and Pharmaceutical Perspectives. Current Medicinal Chemistry, 2012, 19, 3325-3336.	2.4	45
84	Tricyclic Sulfonamides Incorporating Benzothiopyrano [4,3-c]pyrazole and Pyridothiopyrano [4,3-c]pyrazole Effectively Inhibit \hat{l}_{\pm} - and \hat{l}^{2} -Carbonic Anhydrase: X-ray Crystallography and Solution Investigations on 15 Isoforms. Journal of Medicinal Chemistry, 2012, 55, 9619-9629.	6.4	35
85	Sampling protein motion and solvent effect during ligand binding. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1467-1472.	7.1	100
86	CLM94, a Novel Cyclic Amide with Anti-VEGFR-2 and Antiangiogenic Properties, Is Active against Primary Anaplastic Thyroid Cancer in Vitro and in Vivo. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E528-E536.	3.6	49
87	3-Aryl-[1,2,4]triazino[4,3- <i>a</i>]benzimidazol-4(10 <i>H</i>)-one: A Novel Template for the Design of Highly Selective A _{2B} Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2012, 55, 1490-1499.	6.4	28
88	Synthesis and Biological Evaluation of 4-Phenylquinazoline-2-carboxamides Designed as a Novel Class of Potent Ligands of the Translocator Protein. Journal of Medicinal Chemistry, 2012, 55, 4506-4510.	6.4	36
89	Identification of novel molecular scaffolds for the design of MMP-13 inhibitors: A first round of lead optimization. European Journal of Medicinal Chemistry, 2012, 47, 143-152.	5 . 5	25
90	Progresses in the pursuit of aldose reductase inhibitors: The structure-based lead optimization step. European Journal of Medicinal Chemistry, 2012, 51, 216-226.	5.5	41

#	Article	IF	CITATIONS
91	Evaluation of Novel <i>N</i> ¹ -Methyl-2-phenylindol-3-ylglyoxylamides as a New Chemotype of 18 kDa Translocator Protein-Selective Ligand Suitable for the Development of Positron Emission Tomography Radioligands. Journal of Medicinal Chemistry, 2011, 54, 366-373.	6.4	25
92	3-(Fur-2-yl)-10-(2-phenylethyl)-[1,2,4]triazino[4,3- <i>a</i>]benzimidazol-4(10 <i>H</i>)-one, a Novel Adenosine Receptor Antagonist with A _{2A} -Mediated Neuroprotective Effects. ACS Chemical Neuroscience, 2011, 2, 526-535.	3.5	7
93	Non-Nucleoside Inhibitors of Human Adenosine Kinase: Synthesis, Molecular Modeling, and Biological Studies. Journal of Medicinal Chemistry, 2011, 54, 1401-1420.	6.4	27
94	Structural Requirements to Obtain Highly Potent and Selective 18 kDa Translocator Protein (TSPO) Ligands. Current Topics in Medicinal Chemistry, 2011, 11, 860-886.	2.1	39
95	Structure–Activity Relationships on Purine and 2,3â€Dihydropurine Derivatives as Antitubercular Agents: a Data Mining Approach. Chemical Biology and Drug Design, 2011, 78, 718-724.	3.2	0
96	Anxiolytic properties of a 2-phenylindolglyoxylamide TSPO ligand: Stimulation of in vitro neurosteroid production affecting GABAA receptor activity. Psychoneuroendocrinology, 2011, 36, 463-472.	2.7	40
97	Tertiary amides with a five-membered heteroaromatic ring as new probes for the translocator protein. European Journal of Medicinal Chemistry, 2011, 46, 4506-4520.	5.5	15
98	Antiproliferative and proapoptotic activity of CLM3, a novel multiple tyrosine kinase inhibitor, alone and in combination with SN-38 on endothelial and cancer cells. Biochemical Pharmacology, 2011, 81, 1309-1316.	4.4	26
99	Derivatives of Benzimidazolâ€2â€ylquinoline and Benzimidazolâ€2â€ylisoquinoline as Selective A ₁ Adenosine Receptor Antagonists with Stimulant Activity on Human Colon Motility. ChemMedChem, 2011, 6, 1909-1918.	3.2	16
100	Synthesis and Biological Evaluation of 2′â€Oxoâ€2,3â€dihydroâ€3′ <i>H</i> à€• spiro[chromeneâ€4,5′â€{1,3]oxazolidin]â€3′yl]acetic Acid Derivatives as Aldose Reductase Inhibitors. Archiv Der Pharmazie, 2011, 344, 372-385.	V4.1	21
101	Synthesis and biological evaluation in U87MG glioma cells of (ethynylthiophene)sulfonamido-based hydroxamates as matrix metalloproteinase inhibitors. European Journal of Medicinal Chemistry, 2011, 46, 2617-2629.	5.5	36
102	Identification of 5-arylidene-4-thiazolidinone derivatives endowed with dual activity as aldose reductase inhibitors and antioxidant agents for the treatment of diabetic complications. European Journal of Medicinal Chemistry, 2011, 46, 2797-2806.	5 . 5	94
103	Receptor Tyrosine Kinase Kit and Gastrointestinal Stromal Tumours: An Overview. Current Medicinal Chemistry, 2011, 18, 2893-2903.	2.4	7
104	Novel Pyrazolopyrimidine Derivatives as Tyrosine Kinase Inhibitors with Antitumoral Activity in Vitro and in Vivo in Papillary Dedifferentiated Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E288-E296.	3.6	71
105	Anti-ischaemic activity of an antioxidant aldose reductase inhibitor on diabetic and non-diabetic rat hearts. Journal of Pharmacy and Pharmacology, 2010, 62, 107-113.	2.4	6
106	The Blockade of Adenosine Deaminase Ameliorates Chronic Experimental Colitis through the Recruitment of Adenosine A _{2A} and A ₃ Receptors. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 434-442.	2.5	47
107	Recent Advances in the Development of Dual Topoisomerase I and II Inhibitors as Anticancer Drugs. Current Medicinal Chemistry, 2010, 17, 4270-4290.	2.4	125
108	A3 Receptor Ligands: Past, Present and Future Trends. Current Topics in Medicinal Chemistry, 2010, 10, 942-975.	2.1	11

#	Article	IF	Citations
109	Allosteric Modulators for Adenosine Receptors: An Alternative to the Orthosteric Ligands. Current Topics in Medicinal Chemistry, 2010, 10, 976-992.	2.1	10
110	Novel Irreversible Fluorescent Probes Targeting the 18 kDa Translocator Protein: Synthesis and Biological Characterization. Journal of Medicinal Chemistry, 2010, 53, 4085-4093.	6.4	25
111	Novel <i>N</i> ² -Substituted Pyrazolo[3,4- <i>d</i>]pyrimidine Adenosine A ₃ Receptor Antagonists: Inhibition of A ₃ -Mediated Human Glioblastoma Cell Proliferation ^{â€} . Journal of Medicinal Chemistry, 2010, 53, 3954-3963.	6.4	50
112	Inhibition of metalloproteinases derived from tumours: new insights in the treatment of human glioblastoma. Neuroscience, 2010, 168, 514-522.	2.3	49
113	Translocator Protein Ligands as Promising Therapeutic Tools for Anxiety Disorders. Current Medicinal Chemistry, 2009, 16, 3359-3380.	2.4	38
114	A Virtual Screening Study of the 18 kDa Translocator Protein using Pharmacophore Models Combined with 3Dâ€QSAR Studies. ChemMedChem, 2009, 4, 1686-1694.	3.2	7
115	Identification of Anxiolytic/Nonsedative Agents among Indol-3-ylglyoxylamides Acting as Functionally Selective Agonists at the γ-Aminobutyric Acid-A (GABA _A) α ₂ Benzodiazepine Receptor. Journal of Medicinal Chemistry, 2009, 52, 3723-3734.	6.4	27
116	Benzothiopyranoindole-Based Antiproliferative Agents: Synthesis, Cytotoxicity, Nucleic Acids Interaction, and Topoisomerases Inhibition Properties. Journal of Medicinal Chemistry, 2009, 52, 5429-5441.	6.4	30
117	Pursuing Aldose Reductase Inhibitors through in Situ Cross-Docking and Similarity-Based Virtual Screening. Journal of Medicinal Chemistry, 2009, 52, 5578-5581.	6.4	36
118	Computational Studies of Epidermal Growth Factor Receptor: Docking Reliability, Three-Dimensional Quantitative Structureâ^'Activity Relationship Analysis, and Virtual Screening Studies. Journal of Medicinal Chemistry, 2009, 52, 964-975.	6.4	34
119	Exploiting the Pyrazolo[3,4-d]pyrimidin-4-one Ring System as a Useful Template To Obtain Potent Adenosine Deaminase Inhibitors. Journal of Medicinal Chemistry, 2009, 52, 1681-1692.	6.4	44
120	Synthesis andin vitroantiproliferative activity of new substituted benzo[3′,2′:5,6]thiopyrano[4,3-d]pyrimidines. Journal of Heterocyclic Chemistry, 2008, 45, 745-749.	2.6	14
121	Highlighting the New Advances in Drug Discovery and Development. ChemMedChem, 2008, 3, 181-184.	3.2	0
122	Acetic Acid Aldose Reductase Inhibitors Bearing a Five-Membered Heterocyclic Core with Potent Topical Activity in a Visual Impairment Rat Model. Journal of Medicinal Chemistry, 2008, 51, 3182-3193.	6.4	47
123	Anxiolytic-like Effects of $\langle i \rangle N \langle i \rangle, \langle i \rangle N \langle i \rangle$ -Dialkyl-2-phenylindol-3-ylglyoxylamides by Modulation of Translocator Protein Promoting Neurosteroid Biosynthesis. Journal of Medicinal Chemistry, 2008, 51, 5798-5806.	6.4	80
124	Derivatives of 4-Amino-6-hydroxy-2-mercaptopyrimidine as Novel, Potent, and Selective A ₃ Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2008, 51, 1764-1770.	6.4	54
125	GABAA/Bz Receptor Subtypes as Targets for Selective Drugs. Current Medicinal Chemistry, 2007, 14, 2680-2701.	2.4	76
126	Inhibition of Adenosine Deaminase Attenuates Inflammation in Experimental Colitis. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 435-442.	2.5	96

#	Article	IF	CITATIONS
127	New Fluorescent 2-Phenylindolglyoxylamide Derivatives as Probes Targeting the Peripheral-Type Benzodiazepine Receptor:Â Design, Synthesis, and Biological Evaluation. Journal of Medicinal Chemistry, 2007, 50, 404-407.	6.4	46
128	Novel N-Substituted Indol-3-ylglyoxylamides Probing the LDiand L1/L2Lipophilic Regions of the Benzodiazepine Receptor Site in Search for Subtype-Selective Ligandsâ€. Journal of Medicinal Chemistry, 2007, 50, 1627-1634.	6.4	21
129	Pyrido[1,2- <i>a</i>)pyrimidin-4-one Derivatives as a Novel Class of Selective Aldose Reductase Inhibitors Exhibiting Antioxidant Activity. Journal of Medicinal Chemistry, 2007, 50, 4917-4927.	6.4	130
130	5-Amino-2-phenyl[1,2,3]triazolo[1,2-a][1,2,4]benzotriazin-1-one:  A Versatile Scaffold To Obtain Potent and Selective A3 Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2007, 50, 5676-5684.	6.4	22
131	Refinement of the Benzodiazepine Receptor Site Topology by Structureâ "Activity Relationships of NewN-(Heteroarylmethyl)indol-3-ylglyoxylamides. Journal of Medicinal Chemistry, 2006, 49, 2489-2495.	6.4	22
132	Spirohydantoin derivatives of thiopyrano [2,3-b]pyridin-4(4H)-one as potent in vitro and in vivo aldose reductase inhibitors. Bioorganic and Medicinal Chemistry, 2005, 13, 491-499.	3.0	34
133	2-(Benzimidazol-2-yl)quinoxalines:Â A Novel Class of Selective Antagonists at Human A1and A3Adenosine Receptors Designed by 3D Database Searching. Journal of Medicinal Chemistry, 2005, 48, 8253-8260.	6.4	49
134	Synthesis and Benzodiazepine Receptor Affinity of Derivatives of the New Tricyclic Heteroaromatic System Pyrido [3?,2?:5,6] thiopyrano [4,3-c] pyridazin-3 (2H,5H)-one. Archiv Der Pharmazie, 2005, 338, 126-132.	4.1	3
135	Synthesis of New Heterocyclic Ring Systems via [1,3,5]Triazino[1,2-a]benzimidazole Derivatives. Journal of Heterocyclic Chemistry, 2005, 42, 1417-1422.	2.6	3
136	PIGA (N,N-Di-n-butyl-5-chloro-2-(4-chlorophenyl)indol-3-ylglyoxylamide), a New Mitochondrial Benzodiazepine-Receptor Ligand, Induces Apoptosis in C6 glioma Cells. ChemBioChem, 2005, 6, 1082-1088.	2.6	21
137	Synthesis and Benzodiazepine Receptor Affinity of Derivatives of the New Tricyclic Heteroaromatic System Pyrido[3′,2′:5,6]thiopyrano[4,3-c]pyridazin-3(2H,5H)-one ChemInform, 2005, 36, no.	0.0	0
138	High Affinity Central Benzodiazepine Receptor Ligands:Â Synthesis and Biological Evaluation of a Series of Phenyltriazolobenzotriazindione Derivatives. Journal of Medicinal Chemistry, 2005, 48, 2936-2943.	6.4	9
139	Naphtho[1,2-d]isothiazole Acetic Acid Derivatives as a Novel Class of Selective Aldose Reductase Inhibitors. Journal of Medicinal Chemistry, 2005, 48, 6897-6907.	6.4	53
140	Novel, Highly Potent Adenosine Deaminase Inhibitors Containing the Pyrazolo[3,4-d]pyrimidine Ring System. Synthesis, Structureâ-'Activity Relationships, and Molecular Modeling Studies. Journal of Medicinal Chemistry, 2005, 48, 5162-5174.	6.4	47
141	A1 adenosine receptor antagonists, 3-aryl[1,2,4]triazino[4,3-a]benzimidazol-4-(10H)-ones (ATBIs) andN-alkyl andN-acyl-(7-substituted-2-phenylimidazo[1,2-a][1,3,5]triazin-4-yl)amines (ITAs): Different recognition of bovine and human binding sites. Drug Development Research, 2004, 63, 1-7.	2.9	20
142	N,N-Dialkyl-2-phenylindol-3-ylglyoxylamides. A New Class of Potent and Selective Ligands at the Peripheral Benzodiazepine Receptor. Journal of Medicinal Chemistry, 2004, 47, 1852-1855.	6.4	75
143	Synthesis of novel 1,4-dihydropyrido[3′,2′:5,6]thiopyrano[4,3-c]-pyrazoles and 5H-pyrido[3′,2′:5,6]thiopyrano[4,3-d]pyrimidines as potential antiproliferative agents. Journal of Heterocyclic Chemistry, 2003, 40, 783-788.	2.6	14
144	Geometrically Constrained Analogues of N-Benzylindolylglyoxylylamides: [1, 2, 4]Triazino[4, 3-a]benzimidazol-4(10H)-one Derivatives as Potential New Ligands at the Benzodiazepine Receptor. Archiv Der Pharmazie, 2003, 336, 413-421.	4.1	7

#	Article	IF	CITATIONS
145	Novel, Highly Potent Aldose Reductase Inhibitors:  Cyano(2-oxo-2,3-dihydroindol-3-yl)acetic Acid Derivatives. Journal of Medicinal Chemistry, 2003, 46, 1419-1428.	6.4	39
146	Design, Synthesis and Biological Evaluation of NovelN-AlkylandN-Acyl-(7-substituted-2-phenylimidazo[1,2-a][1,3,5]triazin-4-yl)amines (ITAs) as Novel A1Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2002, 45, 5030-5036.	6.4	27
147	Synthesis of novel pyrido $[3\hat{a}\in^2,2\hat{a}\in^2:5,6]$ thiopyrano $[3,2-b]$ indol-5(6H)-ones and 6H-pyrido $[3\hat{a}\in^2,2\hat{a}\in^2:5,6]$ thiopyrano $[4,3-b]$ quinolines, two new heterocyclic ring systems. Journal of Heterocyclic Chemistry, 2002, 39, 1001-1006.	2.6	19
148	An approach to novel fused triazole or tetrazole derivatives starting from benzimidazo[1,2â€ <i>a</i>]quinazolineâ€5(7 <i>H</i>)â€one and 5,7â€dihydroâ€5â€oxopyrido[3′,2′:5,6]pyrimido[1,2â€ <i>a</i>]benzimidazole. Journal of Heterocyclic Cher 2002, 39, 1007-1011.	nistry,	23
149	Dialkylaminoalkylindolonaphthyridines as potential antitumour agents: synthesis, cytotoxicity and DNA binding properties. European Journal of Medicinal Chemistry, 2002, 37, 475-486.	5.5	25
150	[1,2,4]Triazino[4,3-a]benzimidazole Acetic Acid Derivatives:Â A New Class of Selective Aldose Reductase Inhibitors. Journal of Medicinal Chemistry, 2001, 44, 4359-4369.	6.4	40
151	NovelN-(Arylalkyl)indol-3-ylglyoxylylamides Targeted as Ligands of the Benzodiazepine Receptor:Â Synthesis, Biological Evaluation, and Molecular Modeling Analysis of the Structureâ^'Activity Relationshipsâ€. Journal of Medicinal Chemistry, 2001, 44, 2286-2297.	6.4	36
152	Facile synthesis of 3â€substituted [1,2,4]triazino[3,4â€ <i>f</i>]purineâ€4,6,8â€trione derivatives. Journal of Heterocyclic Chemistry, 2001, 38, 607-612.	2.6	5
153	3-Aryl[1,2,4]triazino[4,3-a]benzimidazol-4(10H)-ones:Â A New Class of Selective A1Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2001, 44, 316-327.	6.4	56
154	Synthesis, in vitro antiproliferative activity and DNA-interaction of benzimidazoquinazoline derivatives as potential anti-tumor agents. Il Farmaco, 2001, 56, 159-167.	0.9	70
155	Synthesis of a novel purineâ€containing heterocyclic ring system: 8,10â€Dimethylindolo[2′,3′:5,6][1,2,4]triazino[4,3â€ <i>f</i>]purineâ€9,11(8 <i>H</i> , 10 <i>H</i> , 13 <i>H Journal of Heterocyclic Chemistry, 2000, 37, 373-377.</i>	<≱∡s)â€dio	one.
156	Synthesis of novel 5 <i>H</i> , 11 <i>H</i> ê€pyrido[2′,3′:2,3]thiopyrano[4,3â€ <i>b</i>]â€indoles by fischerâ cyclization. Journal of Heterocyclic Chemistry, 2000, 37, 379-382.	€indole 2.6	21
157	Effects of newly-developed benzodiazepine ligands on noise-induced mitochondrial damage in the rat. Annals of Anatomy, 2000, 182, 311-318.	1.9	1
158	3-Aryl-[1,2,4]triazino[4,3-a]benzimidazol-4(10H)-ones:Â Tricyclic Heteroaromatic Derivatives as a New Class of Benzodiazepine Receptor Ligands. Journal of Medicinal Chemistry, 2000, 43, 96-102.	6.4	24
159	Indole amide derivatives: synthesis, structure–activity relationships and molecular modelling studies of a new series of histamine H1-receptor antagonists. European Journal of Medicinal Chemistry, 1999, 34, 93-105.	5.5	47
160	Synthesis of purinobenzodiazepine and purinobenzotriazocine derivatives, two new heterocyclic ring systems. Journal of Heterocyclic Chemistry, 1999, 36, 639-642.	2.6	8
161	Synthesis, DNA binding and in vitro antiproliferative activity of purinoquinazoline, pyridopyrimidopurine and pyridopyrimidobenzimidazole derivatives as potential antitumor agents. European Journal of Medicinal Chemistry, 1998, 33, 685-696.	5.5	57
162	Synthesis of purinobenzothiazine and pyridothiazinopurine derivatives. Two new heterocyclic ring systems. Journal of Heterocyclic Chemistry, 1998, 35, 57-60.	2.6	16

#	Article	IF	CITATIONS
163	Nâ€~-Phenylindol-3-ylglyoxylohydrazide Derivatives: Synthesis, Structureâ^'Activity Relationships, Molecular Modeling Studies, and Pharmacological Action on Brain Benzodiazepine Receptors. Journal of Medicinal Chemistry, 1998, 41, 3821-3830.	6.4	21
164	Synthesis, Structureâ^'Activity Relationships, and Molecular Modeling Studies ofN-(Indol-3-ylglyoxylyl)benzylamine Derivatives Acting at the Benzodiazepine Receptorâ€,‡. Journal of Medicinal Chemistry, 1996, 39, 5083-5091.	6.4	54
165	Synthesis of fused purinoquinazolines. Three new heterocyclic ring systems. Journal of Heterocyclic Chemistry, 1995, 32, 941-945.	2.6	10
166	A search for quantum mechanical methods suitable for the conformational analysis of models related to some inverse agonists of the benzodiazepine receptor. Molecular Engineering, 1994, 3, 365-376.	0.2	0
167	Benzodiazepine receptor affinity and interaction of some N-(indol-3-ylglyoxylyl)amine derivatives. Journal of Medicinal Chemistry, 1992, 35, 2214-2220.	6.4	28
168	Specific inhibition of benzodiazepine receptor binding by some N-(indol-3-ylglyoxylyl) amino acid derivatives: stereoselective interactions. Journal of Medicinal Chemistry, 1989, 32, 2514-2518.	6.4	18
169	Metal catalysis in norganic reactions. 18. Stereochemistry of the transition-metal catalyzed cross-coupling of (S)-1-bromo-3-methyl-1,2-pentadiene with isobutylmetal compounds. Tetrahedron Letters, 1986, 27, 1067-1068.	1.4	12
170	Metal catalysis in organic reactions. 17. A nickel-promoted route to substituted allenes by reaction of 1-bromo-1,2-dienes with alkyl metals Tetrahedron Letters, 1985, 26, 5101-5104.	1.4	16