
Thaddeus G Golos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6174786/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pax6 Is a Human Neuroectoderm Cell Fate Determinant. Cell Stem Cell, 2010, 7, 90-100.	5.2	396
2	Pluripotent Cell Lines Derived from Common Marmoset (Callithrix jacchus) Blastocysts1. Biology of Reproduction, 1996, 55, 254-259.	1.2	392
3	A rhesus macaque model of Asian-lineage Zika virus infection. Nature Communications, 2016, 7, 12204.	5.8	353
4	Highly efficient maternal-fetal Zika virus transmission in pregnant rhesus macaques. PLoS Pathogens, 2017, 13, e1006378.	2.1	201
5	Trophoblast Differentiation in Embryoid Bodies Derived from Human Embryonic Stem Cells. Endocrinology, 2004, 145, 1517-1524.	1.4	164
6	Altered subcellular localization of transcription factor TEAD4 regulates first mammalian cell lineage commitment. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7362-7367.	3.3	140
7	Heterologous Protection against Asian Zika Virus Challenge in Rhesus Macaques. PLoS Neglected Tropical Diseases, 2016, 10, e0005168.	1.3	125
8	Hofbauer Cells: Their Role in Healthy and Complicated Pregnancy. Frontiers in Immunology, 2018, 9, 2628.	2.2	122
9	Zika in the Americas, year 2: What have we learned? What gaps remain? A report from the Global Virus Network. Antiviral Research, 2017, 144, 223-246.	1.9	104
10	Ocular and uteroplacental pathology in a macaque pregnancy with congenital Zika virus infection. PLoS ONE, 2018, 13, e0190617.	1.1	89
11	Miscarriage and stillbirth following maternal Zika virus infection in nonhuman primates. Nature Medicine, 2018, 24, 1104-1107.	15.2	85
12	A Recently Evolved Novel Trophoblast-Enriched Secreted Form of fms-Like Tyrosine Kinase-1 Variant Is Up-Regulated in Hypoxia and Preeclampsia. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 2524-2530.	1.8	71
13	Hofbauer Cells: Placental Macrophages of Fetal Origin. Results and Problems in Cell Differentiation, 2017, 62, 45-60.	0.2	70
14	The Critical Role of Nonhuman Primates in Medical Research - White Paper. Pathogens and Immunity, 2017, 2, 352.	1.4	70
15	<i>Mamu-I</i> : A Novel Primate MHC Class I <i>B</i> -Related Locus with Unusually Low Variability. Journal of Immunology, 2000, 164, 1386-1398.	0.4	63
16	8-Bromo-Adenosine 3′,5′Monophosphate Regulates Expression of Chorionic Gonadotropin and Fibronectin in Human Cytotrophoblasts*. Journal of Clinical Endocrinology and Metabolism, 1987, 64, 1002-1009.	1.8	60
17	Microarray Analysis of BeWo and JEG3 Trophoblast Cell Lines: Identification of Differentially Expressed Transcripts. Placenta, 2007, 28, 383-389.	0.7	55
18	Maintenance of Pluripotency in Human Embryonic Stem Cells Stably Over-expressing Enhanced Green Fluorescent Protein. Stem Cells and Development, 2004, 13, 636-645.	1.1	53

THADDEUS G GOLOS

#	Article	IF	CITATIONS
19	Corticotropin-releasing hormone-binding protein in primates. American Journal of Primatology, 2001, 53, 123-130.	0.8	44
20	A Soluble Isoform of the Rhesus Monkey Nonclassical MHC Class I Molecule Mamu-AG Is Expressed in the Placenta and the Testis. Journal of Immunology, 2002, 169, 673-683.	0.4	44
21	The Rhesus Monkey Analogue of Human Lymphocyte Antigen-G Is Expressed Primarily in Villous Syncytiotrophoblasts1. Biology of Reproduction, 1998, 58, 728-738.	1.2	42
22	Human Chorionic Gonadotropin and 8-Bromo-Adenosine 3'5'-Monophosphate Stimulate [¹²⁵ I]Low Density Lipoprotein Uptake and Metabolism by Luteinized Human Granulosa Cells in Culture*. Journal of Clinical Endocrinology and Metabolism, 1985, 61, 633-638.	1.8	41
23	Possible Role of 5′-Adenosine Triphosphate in Synchronization of Ca2+ Oscillations in Primate Luteinizing Hormone-Releasing Hormone Neurons. Molecular Endocrinology, 2005, 19, 2736-2747.	3.7	41
24	Dynamic Changes in Primate Endometrial Leukocyte Populations: Differential Distribution of Macrophages and Natural Killer Cells at the Rhesus Monkey Implantation Site and in Early Pregnancy. Placenta, 2004, 25, 297-307.	0.7	38
25	Regulation of Low Density Lipoprotein Receptor Gene Expression in Cultured Human Granulosa Cells: Roles of Human Chorionic Gonadotropin, 8-Bromo-3′,5′-Cyclic Adenosine Monophosphate, and Protein Synthesis*. Molecular Endocrinology, 1987, 1, 321-326.	3.7	35
26	Passive Immunization against the MHC Class I Molecule Mamu-AG Disrupts Rhesus Placental Development and Endometrial Responses. Journal of Immunology, 2007, 179, 8042-8050.	0.4	34
27	Acute Fetal Demise with First Trimester Maternal Infection Resulting from <i>Listeria monocytogenes</i> in a Nonhuman Primate Model. MBio, 2017, 8, .	1.8	34
28	Evolution of a new nonclassical MHC class I locus in two Old World primate species. Immunogenetics, 1999, 49, 86-98.	1.2	33
29	Phenotypic and functional characterization of rhesus monkey decidual lymphocytes: rhesus decidual large granular lymphocytes express CD56 and have cytolytic activity. Journal of Reproductive Immunology, 2001, 50, 57-79.	0.8	33
30	On the role of placental Major Histocompatibility Complex and decidual leukocytes in implantation and pregnancy success using non-human primate models. International Journal of Developmental Biology, 2010, 54, 431-443.	0.3	33
31	Selective distribution and pregnancy-specific expression of DC-SIGN at the maternal–fetal interface in the rhesus macaque: DC-SIGN is a putative marker of the recognition of pregnancy. Placenta, 2006, 27, 11-21.	0.7	32
32	Cloning of rhesus monkey killer-cell Ig-like receptors (KIRs) from early pregnancy decidua. Tissue Antigens, 2001, 58, 329-334.	1.0	31
33	Human Embryonic Stem Cells as a Model for Trophoblast Differentiation. Seminars in Reproductive Medicine, 2006, 24, 314-321.	0.5	30
34	Using Macaques to Address Critical Questions in Zika Virus Research. Annual Review of Virology, 2019, 6, 481-500.	3.0	27
35	Immunophenotype and Cytokine Profiles of Rhesus Monkey CD56bright and CD56dim Decidual Natural Killer Cells1. Biology of Reproduction, 2012, 86, 1-10.	1.2	26
36	African-Lineage Zika Virus Replication Dynamics and Maternal-Fetal Interface Infection in Pregnant Rhesus Macaques. Journal of Virology, 2021, 95, e0222020.	1.5	26

Thaddeus G Golos

#	Article	IF	CITATIONS
37	Pregnancy and live birth from nonsurgical transfer of in vivo- and in vitro -produced blastocysts in the rhesus monkey. Journal of Medical Primatology, 2001, 30, 148-155.	0.3	24
38	Trophoblast differentiation, invasion and hormone secretion in a three-dimensional in vitro implantation model with rhesus monkey embryos. Reproductive Biology and Endocrinology, 2018, 16, 24.	1.4	24
39	Perfusion of the placenta assessed using arterial spin labeling and ferumoxytol dynamic contrast enhanced magnetic resonance imaging in the rhesus macaque. Magnetic Resonance in Medicine, 2019, 81, 1964-1978.	1.9	23
40	Assisted reproductive technologies in the common marmoset: an integral species for developing nonhuman primate models of human diseasesâ€. Biology of Reproduction, 2017, 96, 277-287.	1.2	22
41	Uteroplacental and Fetal 4D Flow MRI in the Pregnant Rhesus Macaque. Journal of Magnetic Resonance Imaging, 2019, 49, 534-545.	1.9	22
42	Previous exposure to dengue virus is associated with increased Zika virus burden at the maternal-fetal interface in rhesus macaques. PLoS Neglected Tropical Diseases, 2021, 15, e0009641.	1.3	20
43	Regulation of low density lipoprotein receptor and cytochrome P-450scc mRNA levels in human granulosa cells. The Journal of Steroid Biochemistry, 1987, 27, 767-773.	1.3	19
44	Pregnancy initiation in the rhesus macaque: towards functional manipulation of the maternal-fetal interface. Reproductive Biology and Endocrinology, 2004, 2, 35.	1.4	18
45	ld2 is a primary partner for the E2-2 basic helix-loop-helix transcription factor in the human placenta. Molecular and Cellular Endocrinology, 2004, 222, 83-92.	1.6	18
46	Characterization of cynomolgus and vervet monkey placental MHC class I expression: diversity of the nonhuman primate AG locus. Immunogenetics, 2009, 61, 431-442.	1.2	18
47	Macrophages modulate the growth and differentiation of rhesus monkey embryonic trophoblasts. American Journal of Reproductive Immunology, 2016, 76, 364-375.	1.2	18
48	Embryotoxic impact of Zika virus in a rhesus macaque in vitro implantation modelâ€. Biology of Reproduction, 2020, 102, 806-816.	1.2	18
49	Modulation of Cytokine and Chemokine Secretions in Rhesus Monkey Trophoblast Coâ€Culture With Decidual but not Peripheral Blood Monocyte–Derived Macrophages. American Journal of Reproductive Immunology, 2011, 66, 115-127.	1.2	17
50	Embryonic stem cells as models of trophoblast differentiation: progress, opportunities, and limitations. Reproduction, 2010, 140, 3-9.	1.1	16
51	Genome editing of CCR5 by CRISPR-Cas9 in Mauritian cynomolgus macaque embryos. Scientific Reports, 2020, 10, 18457.	1.6	16
52	Quantitative definition of neurobehavior, vision, hearing and brain volumes in macaques congenitally exposed to Zika virus. PLoS ONE, 2020, 15, e0235877.	1.1	16
53	Expression of indoleamine 2,3-dioxygenase in the rhesus monkey and common marmoset. Journal of Reproductive Immunology, 2008, 78, 125-133.	0.8	15
54	Characterization of decidual leukocyte populations in cynomolgus and vervet monkeys. Journal of Reproductive Immunology, 2009, 80, 57-69.	0.8	15

THADDEUS G GOLOS

#	Article	IF	CITATIONS
55	Generation of macrophages from peripheral blood monocytes in the rhesus monkey. Journal of Immunological Methods, 2009, 351, 36-40.	0.6	15
56	Defining the rhesus macaque placental miRNAome: Conservation of expression of placental miRNA clusters between the macaque and human. Placenta, 2018, 65, 55-64.	0.7	13
57	Quantitative ferumoxytol-enhanced MRI in pregnancy: A feasibility study in the nonhuman primate. Magnetic Resonance Imaging, 2020, 65, 100-108.	1.0	13
58	Placenta-derived macaque trophoblast stem cells: differentiation to syncytiotrophoblasts and extravillous trophoblasts reveals phenotypic reprogramming. Scientific Reports, 2020, 10, 19159.	1.6	13
59	Non-human Primate Models to Investigate Mechanisms of Infection-Associated Fetal and Pediatric Injury, Teratogenesis and Stillbirth. Frontiers in Genetics, 2021, 12, 680342.	1.1	13
60	Selective expression of NKG2-A and NKG2 - C mRNAs and novel alternative splicing of 5′ exons in rhesus monkey decidua. Immunogenetics, 2001, 53, 69-73.	1.2	12
61	Immune and Trophoblast Cells at the Rhesus Monkey Maternal-Fetal Interface. , 2006, 122, 93-108.		12
62	Placental-Derived Mesenchyme Influences Chorionic Gonadotropin and Progesterone Secretion of Human Embryonic Stem Cell-Derived Trophoblasts. Reproductive Sciences, 2010, 17, 798-808.	1.1	12
63	Immunomorphological Changes in the Rhesus Monkey Endometrium and Decidua During the Menstrual Cycle and Early Pregnancy. American Journal of Reproductive Immunology, 2012, 68, 309-321.	1.2	11
64	Neonatal Development in Prenatally Zika Virus-Exposed Infant Macaques with Dengue Immunity. Viruses, 2021, 13, 1878.	1.5	11
65	Nonhuman primate placental MHC expression: a model for exploring mechanisms of human Maternal-Fetal immune tolerance. Human Immunology, 2003, 64, 1102-1109.	1.2	10
66	Sequelae of Fetal Infection in a Non-human Primate Model of Listeriosis. Frontiers in Microbiology, 2019, 10, 2021.	1.5	9
67	Nonhuman primate transgenesis: progress and prospects. Trends in Biotechnology, 2002, 20, 479-484.	4.9	8
68	Non-classical MHC-E (Mamu-E) Expression in the Rhesus Monkey Placenta. Placenta, 2008, 29, 58-70.	0.7	8
69	Evaluation of a motionâ€robust 2D chemical shiftâ€encoded technique for R2* and field map quantification in ferumoxytolâ€enhanced MRI of the placenta in pregnant rhesus macaques. Journal of Magnetic Resonance Imaging, 2020, 51, 580-592.	1.9	8
70	Generation of SIV-resistant TÂcells and macrophages from nonhuman primate induced pluripotent stem cells with edited CCR5 locus. Stem Cell Reports, 2022, 17, 953-963.	2.3	8
71	The promise of placental extracellular vesicles: models and challenges for diagnosing placental dysfunction in uteroâ€. Biology of Reproduction, 2021, 104, 27-57.	1.2	7
72	Efficient method for expressing transgenes in nonhuman primate embryos using a stable episomal vector. Molecular Reproduction and Development, 2002, 62, 69-73.	1.0	6

Thaddeus G Golos

#	Article	IF	CITATIONS
73	Diversification of Bw4 Specificity and Recognition of a Nonclassical MHC Class I Molecule Implicated in Maternal–Fetal Tolerance by Killer Cell Ig-like Receptors of the Rhesus Macaque. Journal of Immunology, 2018, 201, 2776-2786.	0.4	6
74	Primary cultures of rhesus placental syncytiotrophoblasts are permissive for SIV infection. Journal of Medical Primatology, 1994, 23, 66-74.	0.3	5
75	Impact of ferumoxytol magnetic resonance imaging on the rhesus macaque maternal–fetal interfaceâ€. Biology of Reproduction, 2020, 102, 434-444.	1.2	5
76	Zika virus in rhesus macaque semen and reproductive tract tissues: a pilot study of acute infectionâ€. Biology of Reproduction, 2020, 103, 1030-1042.	1.2	5
77	Zika virus impacts extracellular vesicle composition and cellular gene expression in macaque early gestation trophoblasts. Scientific Reports, 2022, 12, 7348.	1.6	5
78	Human immune globulin treatment controls Zika viremia in pregnant rhesus macaques. PLoS ONE, 2022, 17, e0266664.	1.1	4
79	In Vitro Culture of Embryos from the Common Marmoset (Callithrix jacchus). Methods in Molecular Biology, 2019, 2006, 309-319.	0.4	3
80	Transplantation of T-cell receptor α/β-depleted allogeneic bone marrow in nonhuman primates. Experimental Hematology, 2021, 93, 44-51.	0.2	3
81	Cryopreservation of Mauritian Cynomolgus Macaque (<i>Macaca fascicularis</i>) Sperm in Chemically Defined Medium. Journal of the American Association for Laboratory Animal Science, 2020, 59, 681-686.	0.6	3
82	Incidence of atresia or of luteinization without rupture of the dominant ovarian follicle in rhesus monkeys treated with estradiol-17β on day 8 of the menstrual cycle. American Journal of Primatology, 1994, 34, 261-273.	0.8	2
83	Comparative computerâ€assisted sperm analysis in nonâ€human primates. Journal of Medical Primatology, 2021, 50, 108-119.	0.3	2
84	Acute Exposure to the Food-Borne Pathogen Listeria monocytogenes Does Not Induce α-Synuclein Pathology in the Colonic ENS of Nonhuman Primates. Journal of Inflammation Research, 2021, Volume 14, 7265-7279.	1.6	2
85	Differential Patterns of Transcriptional Protein Expression May Explain Functional Differences between Hematopoietic Progenitors Derived from Human ESC's and Fetal Hematopoietic Tissues Blood, 2005, 106, 3615-3615.	0.6	0
86	Human Embryonic Stem Cells: A Model for Trophoblast Differentiation and Placental Morphogenesis. Reproductive Medicine and Assisted Reproductive Techniques Series, 2009, , 126-135.	0.1	0
87	Title is missing!. , 2020, 15, e0235877.		0
88	Title is missing!. , 2020, 15, e0235877.		0
89	Title is missing!. , 2020, 15, e0235877.		0