
## **Daniel Obrist**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6174784/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Arctic mercury cycling. Nature Reviews Earth & Environment, 2022, 3, 270-286.                                                                                                                                                  | 29.7 | 60        |
| 2  | Vegetation uptake of mercury and impacts on global cycling. Nature Reviews Earth & Environment, 2021, 2, 269-284.                                                                                                              | 29.7 | 150       |
| 3  | Previously unaccounted atmospheric mercury deposition in a midlatitude deciduous forest.<br>Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                                      | 7.1  | 42        |
| 4  | Global Mercury Assimilation by Vegetation. Environmental Science & Technology, 2021, 55, 14245-14257.                                                                                                                          | 10.0 | 42        |
| 5  | Direct detection of atmospheric atomic bromine leading to mercury and ozone depletion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14479-14484.                                | 7.1  | 68        |
| 6  | Mercury in tundra vegetation of Alaska: Spatial and temporal dynamics and stable isotope patterns.<br>Science of the Total Environment, 2019, 660, 1502-1512.                                                                  | 8.0  | 38        |
| 7  | Mercury and trace metal wet deposition across five stations in Alaska: controlling factors, spatial patterns, and source regions. Atmospheric Chemistry and Physics, 2019, 19, 6913-6929.                                      | 4.9  | 27        |
| 8  | Atmosphere-terrestrial exchange of gaseous elemental mercury: parameterization improvement<br>through direct comparison with measured ecosystem fluxes. Environmental Sciences: Processes and<br>Impacts, 2019, 21, 1699-1712. | 3.5  | 12        |
| 9  | Insights from mercury stable isotopes on terrestrial–atmosphere exchange of Hg(0) in the Arctic<br>tundra. Biogeosciences, 2019, 16, 4051-4064.                                                                                | 3.3  | 57        |
| 10 | A vegetation control on seasonal variations in global atmospheric mercury concentrations. Nature<br>Geoscience, 2018, 11, 244-250.                                                                                             | 12.9 | 180       |
| 11 | A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio, 2018, 47, 116-140.                                                      | 5.5  | 500       |
| 12 | Mercury in the Arctic tundra snowpack: temporal and spatial concentration patterns and trace gas exchanges. Cryosphere, 2018, 12, 1939-1956.                                                                                   | 3.9  | 10        |
| 13 | Mercury in Activeâ€Layer Tundra Soils of Alaska: Concentrations, Pools, Origins, and Spatial<br>Distribution. Global Biogeochemical Cycles, 2018, 32, 1058-1073.                                                               | 4.9  | 47        |
| 14 | Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nature, 2017, 547, 201-204.                                                                                                                    | 27.8 | 314       |
| 15 | Mercury isotope compositions across North American forests. Global Biogeochemical Cycles, 2016, 30, 1475-1492.                                                                                                                 | 4.9  | 162       |
| 16 | A synthesis of terrestrial mercury in the western United States: Spatial distribution defined by land cover and plant productivity. Science of the Total Environment, 2016, 568, 522-535.                                      | 8.0  | 68        |
| 17 | Estimating mercury emissions resulting from wildfire in forests of the Western United States.<br>Science of the Total Environment, 2016, 568, 578-586.                                                                         | 8.0  | 44        |
| 18 | New Constraints on Terrestrial Surface–Atmosphere Fluxes of Gaseous Elemental Mercury Using a<br>Global Database. Environmental Science & Technology, 2016, 50, 507-524.                                                       | 10.0 | 136       |

DANIEL OBRIST

| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice.<br>Nature, 2014, 506, 81-84.                                                                          | 27.8 | 79        |
| 20 | Vertical Profile Measurements of Soil Air Suggest Immobilization of Gaseous Elemental Mercury in<br>Mineral Soil. Environmental Science & Technology, 2014, 48, 2242-2252.                              | 10.0 | 78        |
| 21 | Effects of vegetation type on mercury concentrations and pools in two adjacent coniferous and deciduous forests. Journal of Plant Nutrition and Soil Science, 2012, 175, 68-77.                         | 1.9  | 78        |
| 22 | Mercury Distribution across 14 U.S. Forests. Part II: Patterns of Methyl Mercury Concentrations and<br>Areal Mass of Total and Methyl Mercury. Environmental Science & Technology, 2012, 46, 5921-5930. | 10.0 | 52        |
| 23 | Mercury Distribution Across 14 U.S. Forests. Part I: Spatial Patterns of Concentrations in Biomass,<br>Litter, and Soils. Environmental Science & Technology, 2011, 45, 3974-3981.                      | 10.0 | 211       |
| 24 | Fate of mercury in tree litter during decomposition. Biogeosciences, 2011, 8, 2507-2521.                                                                                                                | 3.3  | 64        |
| 25 | Elemental mercury fluxes over a sub-alpine grassland determined with two micrometeorological methods. Atmospheric Environment, 2008, 42, 2922-2933.                                                     | 4.1  | 75        |
| 26 | Summertime elemental mercury exchange of temperate grasslands on an ecosystem-scale. Atmospheric<br>Chemistry and Physics, 2008, 8, 7709-7722.                                                          | 4.9  | 35        |
| 27 | Atmospheric mercury pollution due to losses of terrestrial carbon pools?. Biogeochemistry, 2007, 85, 119-123.                                                                                           | 3.5  | 99        |
| 28 | Foliar Mercury Accumulation and Exchange for Three Tree Species. Environmental Science &<br>Technology, 2006, 40, 6001-6006.                                                                            | 10.0 | 124       |