
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6174466/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis, Relaxometric and Photophysical Properties of a New pH-Responsive MRI Contrast Agent:Â The Effect of Other Ligating Groups on Dissociation of ap-Nitrophenolic Pendant Arm. Journal of the American Chemical Society, 2004, 126, 9248-9256.	6.6	128
2	Gallium(III) Complexes of DOTA and DOTAâ^'Monoamide: Kinetic and Thermodynamic Studies. Inorganic Chemistry, 2010, 49, 10960-10969.	1.9	127
3	Potentiometric and Relaxometric Properties of a Gadolinium-Based MRI Contrast Agent for Sensing Tissue pH. Inorganic Chemistry, 2007, 46, 5260-5270.	1.9	116
4	Equilibrium and Formation/Dissociation Kinetics of Some LnIIIPCTA Complexes. Inorganic Chemistry, 2006, 45, 9269-9280.	1.9	92
5	Properties, Solution State Behavior, and Crystal Structures of Chelates of DOTMA. Inorganic Chemistry, 2011, 50, 7955-7965.	1.9	86
6	Lanthanide dota-like Complexes Containing a Picolinate Pendant: Structural Entry for the Design of Ln ^{III} -Based Luminescent Probes. Inorganic Chemistry, 2011, 50, 4125-4141.	1.9	76
7	Stable and Inert Mn(II)-Based and pH-Responsive Contrast Agents. Journal of the American Chemical Society, 2020, 142, 1662-1666.	6.6	73
8	Synthesis and Characterization of DOTA-(amide)4 Derivatives: Equilibrium and Kinetic Behavior of Their Lanthanide(III) Complexes. European Journal of Inorganic Chemistry, 2007, 2007, 4340-4349.	1.0	66
9	Kinetic Inertness of the Mn ²⁺ Complexes Formed with AAZTA and Some Open-Chain EDTA Derivatives. Inorganic Chemistry, 2012, 51, 10065-10067.	1.9	60
10	Modulation of water exchange in Eu(III) DOTA–tetraamide complexes: considerations for <i>in vivo</i> imaging of PARACEST agents. Contrast Media and Molecular Imaging, 2009, 4, 183-191.	0.4	56
11	Stable Mn ²⁺ , Cu ²⁺ and Ln ³⁺ complexes with cyclen-based ligands functionalized with picolinate pendant arms. Dalton Transactions, 2015, 44, 5017-5031.	1.6	55
12	Picolinate-Containing Macrocyclic Mn ²⁺ Complexes as Potential MRI Contrast Agents. Inorganic Chemistry, 2014, 53, 5136-5149.	1.9	54
13	(<i>S</i>)-5-(<i>p</i> -Nitrobenzyl)-PCTA, a Promising Bifunctional Ligand with Advantageous Metal Ion Complexation Kinetics. Bioconjugate Chemistry, 2009, 20, 565-575.	1.8	53
14	Lanthanide(III) Complexes with a Reinforced Cyclam Ligand Show Unprecedented Kinetic Inertness. Journal of the American Chemical Society, 2014, 136, 17954-17957.	6.6	53
15	Analysis of the Conformational Behavior and Stability of the SAP and TSAP Isomers of Lanthanide(III) NB-DOTA-Type Chelates. Inorganic Chemistry, 2011, 50, 7966-7979.	1.9	48
16	Synthesis and Characterization of a Hypoxiaâ€Sensitive MRI Probe. Chemistry - A European Journal, 2012, 18, 9669-9676.	1.7	47
17	The Use of the Macrocyclic Chelator DOTA in Radiochemical Separations. European Journal of Inorganic Chemistry, 2020, 2020, 36-56.	1.0	44
18	Mn(II)-Based MRI Contrast Agent Candidate for Vascular Imaging. Journal of Medicinal Chemistry, 2020, 63, 6057-6065.	2.9	41

#	Article	IF	CITATIONS
19	H ₄ octapa: Highly Stable Complexation of Lanthanide(III) Ions and Copper(II). Inorganic Chemistry, 2015, 54, 2345-2356.	1.9	40
20	A Bridge to Coordination Isomer Selection in Lanthanide(III) DOTA-tetraamide Complexes. Inorganic Chemistry, 2007, 46, 2584-2595.	1.9	39
21	Effect of the Nature of Donor Atoms on the Thermodynamic, Kinetic and Relaxation Properties of Mn(II) Complexes Formed With Some Trisubstituted 12-Membered Macrocyclic Ligands. Frontiers in Chemistry, 2018, 6, 232.	1.8	39
22	Lanthanide(III) Complexes of Tris(amide) PCTA Derivatives as Potential Bimodal Magnetic Resonance and Optical Imaging Agents. Chemistry - A European Journal, 2009, 15, 13188-13200.	1.7	38
23	Albumin-binding PARACEST agents. Journal of Biological Inorganic Chemistry, 2007, 12, 855-865.	1.1	36
24	Physico-chemical properties of MnII complexes formed with cis- and trans-DO2A: thermodynamic, electrochemical and kinetic studies. Journal of Inorganic Biochemistry, 2016, 163, 206-213.	1.5	36
25	Novel CDTA-based, Bifunctional Chelators for Stable and Inert Mn ^{II} Complexation: Synthesis and Physicochemical Characterization. Inorganic Chemistry, 2017, 56, 7746-7760.	1.9	36
26	Taking the next step toward inert Mn ²⁺ complexes of open-chain ligands: the case of the rigid PhDTA ligand. New Journal of Chemistry, 2018, 42, 8001-8011.	1.4	34
27	Complexation of Mn(II) by Rigid Pyclen Diacetates: Equilibrium, Kinetic, Relaxometric, Density Functional Theory, and Superoxide Dismutase Activity Studies. Inorganic Chemistry, 2021, 60, 1133-1148.	1.9	34
28	Expanding the Family of Pyclen-Based Ligands Bearing Pendant Picolinate Arms for Lanthanide Complexation. Inorganic Chemistry, 2018, 57, 6932-6945.	1.9	33
29	Approaching the Kinetic Inertness of Macrocyclic Gadolinium(III)â€Based MRI Contrast Agents with Highly Rigid Openâ€Chain Derivatives. Chemistry - A European Journal, 2016, 22, 896-901.	1.7	31
30	Effect of the Regiochemistry of Butyl Amide Substituents on the Solution-State Structures of Lanthanide(III) DOTA-Tetraamide Complexes. Inorganic Chemistry, 2009, 48, 10338-10345.	1.9	28
31	Investigations into whole water, prototropic and amide proton exchange in lanthanide(iii) DOTA-tetraamide chelates. Dalton Transactions, 2011, 40, 6759.	1.6	28
32	Complexation of Ln ³⁺ Ions with Cyclam Dipicolinates: A Small Bridge that Makes Huge Differences in Structure, Equilibrium, and Kinetic Properties. Inorganic Chemistry, 2016, 55, 2227-2239.	1.9	26
33	Stable and Inert Yttrium(III) Complexes with Pyclen-Based Ligands Bearing Pendant Picolinate Arms: Toward New Pharmaceuticals for β-Radiotherapy. Inorganic Chemistry, 2018, 57, 2051-2063.	1.9	25
34	Definition of the Labile Capping Bond Effect in Lanthanide Complexes. Chemistry - A European Journal, 2017, 23, 1110-1117.	1.7	24
35	The role of the capping bond effect on pyclen ^{nat} Y ³⁺ / ⁹⁰ Y ³⁺ chelates: full control of the regiospecific N-functionalization makes the difference. Chemical Communications, 2017, 53, 9534-9537.	2.2	23
36	A Coordination Chemistry Approach to Fineâ€Tune the Physicochemical Parameters of Lanthanide Complexes Relevant to Medical Applications. Chemistry - A European Journal, 2018, 24, 3127-3131.	1.7	22

#	Article	IF	CITATIONS
37	A Pyridine-Based Ligand with Two Hydrazine Functions for Lanthanide Chelation: Remarkable Kinetic Inertness for a Linear, Bishydrated Complex. Inorganic Chemistry, 2015, 54, 5991-6003.	1.9	21
38	Remarkable differences and similarities between the isomeric Mn(II)- cis - and trans- 1,2-diaminocyclohexane- N , N , N ′, N ′-tetraacetate complexes. Inorganica Chimica Acta, 2018, 472, 254-2	63 ^{1.2}	21
39	The stereochemistry of amide side chains containing carboxyl groups influences water exchange rates in EuDOTA-tetraamide complexes. Journal of Biological Inorganic Chemistry, 2014, 19, 161-171.	1.1	20
40	Lanthanideâ€Based <i>T_{2ex}</i> and CEST Complexes Provide Insights into the Design of pH Sensitive MRI Agents. Angewandte Chemie - International Edition, 2017, 56, 16626-16630.	7.2	20
41	Complexation Properties of the Di-, Tri-, and Tetraacetate Derivatives of Bis(aminomethyl)phosphinic Acid. European Journal of Inorganic Chemistry, 2007, 2007, 701-713.	1.0	19
42	Coordination Properties of GdDO3A-Based Model Compounds of Bioresponsive MRI Contrast Agents. Inorganic Chemistry, 2018, 57, 5973-5986.	1.9	18
43	Mn ²⁺ complexes of open-chain ligands with a pyridine backbone: less donor atoms lead to higher kinetic inertness. New Journal of Chemistry, 2018, 42, 8012-8020.	1.4	17
44	Dialing in on pharmacological features for a therapeutic antioxidant small molecule. Dalton Transactions, 2019, 48, 12430-12439.	1.6	17
45	Synthesis and evaluation of lanthanide ion DOTA–tetraamide complexes bearing peripheral hydroxyl groups. Journal of Biological Inorganic Chemistry, 2009, 14, 421-438.	1.1	15
46	Unexpected Trends in the Stability and Dissociation Kinetics of Lanthanide(III) Complexes with Cyclen-Based Ligands across the Lanthanide Series. Inorganic Chemistry, 2020, 59, 8184-8195.	1.9	15
47	Highly Stable Complexes of Divalent Metal Ions (Mg ²⁺ , Ca ²⁺ ,) Tj ETQq1 1 0.784314 rg Containing a Picolinate Pendant. European Journal of Inorganic Chemistry, 2014, 2014, 6165-6173.	gBT /Overl 1.0	ock 10 Tf 50 14
48	Gallium(III) chelates of mixed phosphonate-carboxylate triazamacrocyclic ligands relevant to nuclear medicine: Structural, stability and in vivo studies. Journal of Inorganic Biochemistry, 2017, 177, 8-16.	1.5	14
49	Equilibrium and dissociation kinetics of the [Al(NOTA)] complex (NOTAÂ=Â1,4,7-triazacyclononane-1,4,7-triacetate). Reaction Kinetics, Mechanisms and Catalysis, 2015, 116, 19-33.	0.8	13
50	[Tl ^{III} (dota)] ^{â^'} : An Extraordinarily Robust Macrocyclic Complex. Inorganic Chemistry, 2015, 54, 5426-5437.	1.9	12
51	Pyclen-Based Ligands Bearing Pendant Picolinate Arms for Gadolinium Complexation. Inorganic Chemistry, 2021, 60, 2390-2405.	1.9	12
52	Synthesis and characterization of a stable and inert Mn ^{II} -based Zn ^{II} responsive MRI probe for molecular imaging of glucose stimulated zinc secretion (GSZS). Inorganic Chemistry Frontiers, 2022, 9, 577-583.	3.0	12
53	Copper(II) complexes of some N-substituted bis(aminomethyl)phosphinate ligands. An integrated EPR study of microspeciation and coordination modes by the two-dimensional simulation method. Journal of Inorganic Biochemistry, 2004, 98, 1655-1666.	1.5	11
54	Towards ²¹³ Bi alpha-therapeutics and beyond: unravelling the foundations of efficient Bi ^{III} complexation by DOTP. Inorganic Chemistry Frontiers, 2021, 8, 3893-3904.	3.0	11

#	Article	lF	CITATIONS
55	Rigidified Derivative of the Non-macrocyclic Ligand H ₄ OCTAPA for Stable Lanthanide(III) Complexation. Inorganic Chemistry, 2022, 61, 5157-5171.	1.9	11
56	Lanthanide(III) complexes of some natural siderophores: A thermodynamic, kinetic and relaxometric study. Journal of Inorganic Biochemistry, 2013, 127, 53-61.	1.5	10
57	Comparison of the equilibrium, kinetic and water exchange properties of some metal ion-DOTA and DOTA-bis(amide) complexes. Journal of Inorganic Biochemistry, 2020, 206, 111042.	1.5	10
58	How the Chemical Properties of GBCAs Influence Their Safety Profiles In Vivo. Molecules, 2022, 27, 58.	1.7	10
59	Enhancement of the Antioxidant Activity and Neurotherapeutic Features through Pyridol Addition to Tetraazamacrocyclic Molecules. Inorganic Chemistry, 2019, 58, 16771-16784.	1.9	9
60	Equilibria and Structure of the Lanthanide(III)-2-hydroxy-1,3-diaminopropane-N,N,Nâ€~,Nâ€~-tetraacetate Complexes:Â Formation of Alkoxo-Bridged Dimers in Solid State and Solution. Inorganic Chemistry, 2006, 45, 4951-4962.	1.9	8
61	Manganese Complex of a Rigidified 15-Membered Macrocycle: A Comprehensive Study. Inorganic Chemistry, 2020, 59, 11366-11376.	1.9	8
62	Formation, stability and catalase-like activity of mononuclear manganese(<scp>ii</scp>) and oxomanganese(<scp>iv</scp>) complexes in protic and aprotic solvents. New Journal of Chemistry, 2020, 44, 5545-5555.	1.4	8
63	Design of polyazamacrocyclic Gd ³⁺ theranostic agents combining magnetic resonance imaging and two-photon photodynamic therapy. Inorganic Chemistry Frontiers, 2021, 8, 2213-2224.	3.0	8
64	Expanding the Ligand Classes Used for Mn(II) Complexation: Oxa-aza Macrocycles Make the Difference. Molecules, 2021, 26, 1524.	1.7	7
65	Stable and inert macrocyclic cobalt(<scp>ii</scp>) and nickel(<scp>ii</scp>) complexes with paraCEST response. Dalton Transactions, 2022, 51, 1580-1593.	1.6	7
66	Lanthanide Complexes Formed with the Tri- and Tetraacetate Derivatives of Bis(aminomethyl)phosphinic Acid: Equilibrium, Kinetic and NMR Spectroscopic Studies. European Journal of Inorganic Chemistry, 2012, 2012, 2062-2073.	1.0	6
67	A New Oxygen Containing Pyclen-Type Ligand as a Manganese(II) Binder for MRI and 52Mn PET Applications: Equilibrium, Kinetic, Relaxometric, Structural and Radiochemical Studies. Molecules, 2022, 27, 371.	1.7	6
68	Picolinate-appended tacn complexes for bimodal imaging: Radiolabeling, relaxivity, photophysical and electrochemical studies. Journal of Inorganic Biochemistry, 2020, 205, 110978.	1.5	5
69	2 Gadolinium(III)-Based Contrast Agents for Magnetic Resonance Imaging. A Re-Appraisal. , 2021, , 39-70.		5
70	Relaxometric determination of binding between Mn(II)–UDP and Mn(II)–UDP-glucose in aqueous solution. Carbohydrate Research, 2013, 368, 68-72.	1.1	2
71	Lanthanideâ€Based <i>T_{2ex}</i> and CEST Complexes Provide Insights into the Design of pH Sensitive MRI Agents. Angewandte Chemie, 2017, 129, 16853-16857.	1.6	2
72	Complexes of Bifunctional DO3A-N-(α-amino)propinate Ligands with Mg(II), Ca(II), Cu(II), Zn(II), and Lanthanide(III) Ions: Thermodynamic Stability, Formation and Dissociation Kinetics, and Solution Dynamic NMR Studies. Molecules, 2021, 26, 4956.	1.7	2

#	Article	IF	CITATIONS
73	Synthesis, Physicochemical, Labeling and In Vivo Characterization of 44Sc-Labeled DO3AM-NI as a Hypoxia-Sensitive PET Probe. Pharmaceuticals, 2022, 15, 666.	1.7	2
74	Exploring Cyclic Aminopolycarboxylate Ligands for Sb(III) Complexation: PCTA and Its Derivatives as a Promising Solution. Inorganic Chemistry, 2021, 60, 14253-14262.	1.9	1
75	Chapter 5.2. The Future of Biomedical Imaging: Synthesis and Chemical Properties of the DTPA and DOTA Derivative Ligands and Their Complexes. RSC Drug Discovery Series, 2011, , 208-260.	0.2	1
76	Exceptionally fast formation of stable rigidified cross-bridged complexes formed with Cu(ii) isotopes for molecular imaging. Inorganic Chemistry Frontiers, 0, , .	3.0	1
77	Importance of ligand design in lanthanide azamacrocyclic complexes relevant to biomedical applications. Fundamental Theories of Physics, 2022, , 129-220.	0.1	1
78	NyĀŀtláncú és makrociklusos aminokarboxilát ligandumok szintézise és fémkomplexeik vizsgálata: koordinációs kémia az orvosi képalkotás szolgálatában. Magyar Kemiai Folyoirat, Kemiai Kozlemenyek, 2017, 123, 82-93.	0.0	0