John A Ogren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6174063/publications.pdf Version: 2024-02-01

IOHN A OCDEN

#	Article	IF	CITATIONS
1	Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. Journal of Geophysical Research, 2001, 106, 28371-28398.	3.3	1,199
2	Recommendations for reporting "black carbon" measurements. Atmospheric Chemistry and Physics, 2013, 13, 8365-8379.	1.9	808
3	Determining Aerosol Radiative Properties Using the TSI 3563 Integrating Nephelometer. Aerosol Science and Technology, 1998, 29, 57-69.	1.5	800
4	Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmospheric Measurement Techniques, 2012, 5, 657-685.	1.2	689
5	Towards Aerosol Light-Absorption Measurements with a 7-Wavelength Aethalometer: Evaluation with a Photoacoustic Instrument and 3-Wavelength Nephelometer. Aerosol Science and Technology, 2005, 39, 17-29.	1.5	518
6	Performance Characteristics of a High-Sensitivity, Three-Wavelength, Total Scatter/Backscatter Nephelometer. Journal of Atmospheric and Oceanic Technology, 1996, 13, 967-986.	0.5	436
7	Quantifying and Minimizing Uncertainty of Climate Forcing by Anthropogenic Aerosols. Bulletin of the American Meteorological Society, 1994, 75, 375-400.	1.7	345
8	Characterization and intercomparison of aerosol absorption photometers: result of two intercomparison workshops. Atmospheric Measurement Techniques, 2011, 4, 245-268.	1.2	284
9	Variability of Aerosol Optical Properties at Four North American Surface Monitoring Sites. Journals of the Atmospheric Sciences, 2002, 59, 1135-1150.	0.6	269
10	Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project. Atmospheric Chemistry and Physics, 2011, 11, 2423-2453.	1.9	259
11	Evaluation of Multiangle Absorption Photometry for Measuring Aerosol Light Absorption. Aerosol Science and Technology, 2005, 39, 40-51.	1.5	258
12	Mesoscale Variations of Tropospheric Aerosols*. Journals of the Atmospheric Sciences, 2003, 60, 119-136.	0.6	258
13	Organic material in the global troposphere. Reviews of Geophysics, 1983, 21, 921-952.	9.0	242
14	A 3-year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska. Journal of Geophysical Research, 2002, 107, AAC 8-1-AAC 8-15.	3.3	239
15	Comparison of methods for deriving aerosol asymmetry parameter. Journal of Geophysical Research, 2006, 111, .	3.3	220
16	The Reno Aerosol Optics Study: An Evaluation of Aerosol Absorption Measurement Methods. Aerosol Science and Technology, 2005, 39, 1-16.	1.5	215
17	Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation. Atmospheric Chemistry and Physics, 2010, 10, 4775-4793.	1.9	212
18	Pan-Arctic enhancements of light absorbing aerosol concentrations due to North American boreal forest fires during summer 2004. Journal of Geophysical Research, 2006, 111, .	3.3	205

#	Article	lF	CITATIONS
19	Four years of continuous surface aerosol measurements from the Department of Energy's Atmospheric Radiation Measurement Program Southern Great Plains Cloud and Radiation Testbed site. Journal of Geophysical Research, 2001, 106, 20735-20747.	3.3	198
20	Design and Calibration of a Counterflow Virtual Impactor for Sampling of Atmospheric Fog and Cloud Droplets. Aerosol Science and Technology, 1988, 8, 235-244.	1.5	196
21	Variations and sources of the equivalent black carbon in the high Arctic revealed by long-term observations at Alert and Barrow: 1989–2003. Journal of Geophysical Research, 2006, 111, .	3.3	188
22	Photoacoustic and filter-based ambient aerosol light absorption measurements: Instrument comparisons and the role of relative humidity. Journal of Geophysical Research, 2003, 108, AAC 15-1.	3.3	172
23	Direct aerosol forcing: Calculation from observables and sensitivities to inputs. Journal of Geophysical Research, 2008, 113, .	3.3	157
24	Carbonaceous aerosols over the Indian Ocean during the Indian Ocean Experiment (INDOEX): Chemical characterization, optical properties, and probable sources. Journal of Geophysical Research, 2002, 107, INX2 29-1.	3.3	154
25	An assessment of aerosolâ€cloud interactions in marine stratus clouds based on surface remote sensing. Journal of Geophysical Research, 2009, 114, .	3.3	148
26	Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity. Atmospheric Chemistry and Physics, 2014, 14, 4679-4713.	1.9	148
27	Inâ€situ sampling of clouds with a droplet to aerosol converter. Geophysical Research Letters, 1985, 12, 121-124.	1.5	147
28	An "A-Train―Strategy for Quantifying Direct Climate Forcing by Anthropogenic Aerosols. Bulletin of the American Meteorological Society, 2005, 86, 1795-1810.	1.7	138
29	Comment on "Calibration and Intercomparison of Filter-Based Measurements of Visible Light Absorption by Aerosols― Aerosol Science and Technology, 2010, 44, 589-591.	1.5	136
30	Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling. Atmospheric Chemistry and Physics, 2006, 6, 1657-1732.	1.9	135
31	Aerosol backscatter fraction and single scattering albedo: Measured values and uncertainties at a coastal station in the Pacific Northwest. Journal of Geophysical Research, 1999, 104, 26793-26807.	3.3	133
32	Elemental carbon in the atmosphere: cycle and lifetime. Tellus, Series B: Chemical and Physical Meteorology, 1983, 35B, 241-254.	0.8	130
33	Aerosol decadal trends – Part 1: In-situ optical measurements at GAW and IMPROVE stations. Atmospheric Chemistry and Physics, 2013, 13, 869-894.	1.9	126
34	CCN predictions using simplified assumptions of organic aerosol composition and mixing state: a synthesis from six different locations. Atmospheric Chemistry and Physics, 2010, 10, 4795-4807.	1.9	124
35	Climatology of aerosol radiative properties in the free troposphere. Atmospheric Research, 2011, 102, 365-393.	1.8	121
36	Prediction of cloud condensation nucleus number concentration using measurements of aerosol size distributions and composition and light scattering enhancement due to humidity. Journal of Geophysical Research, 2007, 112, .	3.3	119

John A Ogren

#	Article	lF	CITATIONS
37	Hygroscopic growth of aerosol particles and its influence on nucleation scavenging in cloud: Experimental results from Kleiner Feldberg. Journal of Atmospheric Chemistry, 1994, 19, 129-152.	1.4	116
38	Spectral albedos of an alpine snowpack. Cold Regions Science and Technology, 1981, 4, 121-127.	1.6	113
39	INDOEX aerosol: A comparison and summary of chemical, microphysical, and optical properties observed from land, ship, and aircraft. Journal of Geophysical Research, 2002, 107, INX2 32-1.	3.3	111
40	Aerosol Optical properties at Sagres, Portugal during ACE-2. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 694-715.	0.8	108
41	Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories. Atmospheric Chemistry and Physics, 2018, 18, 2853-2881.	1.9	108
42	Aerosol retrievals from AVHRR radiances: effects of particle nonsphericity and absorption and an updated long-term global climatology of aerosol properties. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003, 79-80, 953-972.	1.1	106
43	Observations of relative humidity effects on aerosol light scattering in the Yangtze River Delta of China. Atmospheric Chemistry and Physics, 2015, 15, 8439-8454.	1.9	106
44	Cloud droplets: Solute concentration is size dependent. Journal of Geophysical Research, 1988, 93, 9477-9482.	3.3	105
45	Aerosol light scattering properties at Cape Grim, Tasmania, during the First Aerosol Characterization Experiment (ACE 1). Journal of Geophysical Research, 1998, 103, 16565-16574.	3.3	105
46	Black carbon in the atmosphere and snow, from pre-industrial times until present. Atmospheric Chemistry and Physics, 2011, 11, 6809-6836.	1.9	104
47	Intercomparisons and Aerosol Calibrations of 12 Commercial Integrating Nephelometers of Three Manufacturers. Journal of Atmospheric and Oceanic Technology, 2006, 23, 902-914.	0.5	99
48	Hygroscopic growth of aerosol particles in the Po Valley. Tellus, Series B: Chemical and Physical Meteorology, 1992, 44, 556-569.	0.8	95
49	Aerosol optical, chemical and physical properties at Gosan, Korea during Asian dust and pollution episodes in 2001. Atmospheric Environment, 2005, 39, 39-50.	1.9	95
50	Spatial variability of submicrometer aerosol radiative properties over the Indian Ocean during INDOEX. Journal of Geophysical Research, 2002, 107, INX2 10-1.	3.3	90
51	Measurement of relative humidity dependent light scattering of aerosols. Atmospheric Measurement Techniques, 2010, 3, 39-50.	1.2	88
52	Classifying aerosol type using in situ surface spectral aerosol optical properties. Atmospheric Chemistry and Physics, 2017, 17, 12097-12120.	1.9	86
53	Apportionment of light scattering and hygroscopic growth to aerosol composition. Geophysical Research Letters, 1998, 25, 513-516.	1.5	82
54	Racoro Extended-Term Aircraft Observations of Boundary Layer Clouds. Bulletin of the American Meteorological Society, 2012, 93, 861-878.	1.7	81

#	Article	IF	CITATIONS
55	Seasonality of aerosol optical properties in the Arctic. Atmospheric Chemistry and Physics, 2018, 18, 11599-11622.	1.9	80
56	Observations of the vertical and regional variability of aerosol optical properties over central and eastern North America. Journal of Geophysical Research, 1999, 104, 16793-16805.	3.3	79
57	Why Hasn't Earth Warmed as Much as Expected?. Journal of Climate, 2010, 23, 2453-2464.	1.2	78
58	Aerosol decadal trends $\hat{a} \in$ "Part 2: In-situ aerosol particle number concentrations at GAW and ACTRIS stations. Atmospheric Chemistry and Physics, 2013, 13, 895-916.	1.9	78
59	Changes in aerosol size- and phase distributions due to physical and chemical processes in fog. Tellus, Series B: Chemical and Physical Meteorology, 1992, 44, 489-504.	0.8	77
60	The Po Valley Fog Experiment 1989 Tellus, Series B: Chemical and Physical Meteorology, 1992, 44, 448-468.	0.8	76
61	In situ aerosol profiles over the Southern Great Plains cloud and radiation test bed site: 1. Aerosol optical properties. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	76
62	The Kleiner Feldberg Cloud Experiment 1990. An overview. Journal of Atmospheric Chemistry, 1994, 19, 3-35.	1.4	75
63	Evaluation of daytime measurements of aerosols and water vapor made by an operational Raman lidar over the Southern Great Plains. Journal of Geophysical Research, 2006, 111, .	3.3	71
64	A multi-year study of lower tropospheric aerosol variability and systematic relationships from four North American regions. Atmospheric Chemistry and Physics, 2015, 15, 12487-12517.	1.9	71
65	Surface submicron aerosol chemical composition: What fraction is not sulfate?. Journal of Geophysical Research, 2000, 105, 6785-6805.	3.3	70
66	On Aethalometer measurement uncertainties and an instrument correction factor for the Arctic. Atmospheric Measurement Techniques, 2017, 10, 5039-5062.	1.2	70
67	Continuous light absorption photometer for long-term studies. Atmospheric Measurement Techniques, 2017, 10, 4805-4818.	1.2	69
68	Evaporation of Ammonium Nitrate Aerosol in a Heated Nephelometer:Â Implications for Field Measurements. Environmental Science & Technology, 1997, 31, 2878-2883.	4.6	68
69	Elemental carbon in the atmosphere: cycle and lifetime. Tellus, Series B: Chemical and Physical Meteorology, 2022, 35, 241.	0.8	65
70	A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories. Atmospheric Measurement Techniques, 2020, 13, 4353-4392.	1.2	65
71	Hygroscopic growth of aerosol particles in the Po Valley. Tellus, Series B: Chemical and Physical Meteorology, 2022, 44, 556.	0.8	64
72	Measurements of the size-dependence of solute concentrations in cloud droplets. Tellus, Series B: Chemical and Physical Meteorology, 1989, 41B, 24-31.	0.8	63

John A Ogren

#	Article	IF	CITATIONS
73	The Po Valley Fog Experiment 1989 An overview. Tellus, Series B: Chemical and Physical Meteorology, 2022, 44, 448.	0.8	63
74	Measurement of the removal rate of elemental carbon from the atmosphere. Science of the Total Environment, 1984, 36, 329-338.	3.9	61
75	Aerosol light-scattering enhancement due to water uptake during the TCAP campaign. Atmospheric Chemistry and Physics, 2014, 14, 7031-7043.	1.9	61
76	An evaluation of three methods for measuring black carbon in Alert, Canada. Atmospheric Chemistry and Physics, 2017, 17, 15225-15243.	1.9	61
77	ARM Southern Great Plains Site Observations of the Smoke Pall Associated with the 1998 Central American Fires. Bulletin of the American Meteorological Society, 2000, 81, 2563-2591.	1.7	59
78	PARAGON: An Integrated Approach for Characterizing Aerosol Climate Impacts and Environmental Interactions. Bulletin of the American Meteorological Society, 2004, 85, 1491-1502.	1.7	59
79	Particulate air pollutants: A comparison of British "Smoke―with optical absorption coefficient and elemental carbon concentration. Atmospheric Environment, 1983, 17, 2337-2341.	1.1	58
80	Aerosol properties at a midlatitude northern hemisphere continental site. Journal of Geophysical Research, 2001, 106, 3019-3032.	3.3	58
81	Phase partitioning of aerosol particles in clouds at Kleiner Feldberg. Journal of Atmospheric Chemistry, 1994, 19, 107-127.	1.4	56
82	Comparison of AOD, AAOD and column single scattering albedo from AERONET retrievals and in situ profiling measurements. Atmospheric Chemistry and Physics, 2017, 17, 6041-6072.	1.9	56
83	International Arctic Systems for Observing the Atmosphere: An International Polar Year Legacy Consortium. Bulletin of the American Meteorological Society, 2016, 97, 1033-1056.	1.7	54
84	Determination of elemental carbon in rainwater. Analytical Chemistry, 1983, 55, 1569-1572.	3.2	52
85	Implications for models and measurements of chemical inhomogeneities among cloud droplets. Tellus, Series B: Chemical and Physical Meteorology, 2022, 44, 208.	0.8	51
86	The influence of aerosol particle composition on cloud droplet formation. Journal of Atmospheric Chemistry, 1994, 19, 153-171.	1.4	51
87	Evaluation of groundâ€based black carbon measurements by filterâ€based photometers at two Arctic sites. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3544-3572.	1.2	51
88	In Situ Observations of Cirrus Cloud Microphysical Properties Using the Counterflow Virtual Impactor. Journal of Atmospheric and Oceanic Technology, 1993, 10, 294-303.	0.5	50
89	Seasonal differences in the vertical profiles of aerosol optical properties over rural Oklahoma. Atmospheric Chemistry and Physics, 2011, 11, 10661-10676.	1.9	50
90	Changes in aerosol size- and phase distributions due to physical and chemical processes in fog. Tellus, Series B: Chemical and Physical Meteorology, 1992, 44, 489-504.	0.8	49

#	Article	IF	CITATIONS
91	Observation of enhanced water vapor in Asian dust layer and its effect on atmospheric radiative heating rates. Geophysical Research Letters, 2004, 31, .	1.5	48
92	Comparison of aerosol optical depth inferred from surface measurements with that determined by Sun photometry for cloud-free conditions at a continental U.S. site. Journal of Geophysical Research, 2000, 105, 6807-6816.	3.3	46
93	Comparison between lidar and nephelometer measurements of aerosol hygroscopicity at the Southern Great Plains Atmospheric Radiation Measurement site. Journal of Geophysical Research, 2006, 111, .	3.3	45
94	Coupling aerosol size distributions and size-resolved hygroscopicity to predict humidity-dependent optical properties and cloud condensation nuclei spectra. Journal of Geophysical Research, 2006, 111, .	3.3	44
95	Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition. Scientific Data, 2017, 4, 170003.	2.4	44
96	Phase partitioning for different aerosol species in fog. Tellus, Series B: Chemical and Physical Meteorology, 2022, 44, 545.	0.8	44
97	Vertical profiles of aerosol optical properties over central Illinois and comparison with surface and satellite measurements. Atmospheric Chemistry and Physics, 2012, 12, 11695-11721.	1.9	43
98	Size distribution and optical properties of African mineral dust after intercontinental transport. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7117-7138.	1.2	42
99	Microphysics of clouds at Kleiner Feldberg. Journal of Atmospheric Chemistry, 1994, 19, 59-85.	1.4	41
100	Sensitivity of Retrieved Aerosol Properties to Assumptions in the Inversion of Spectral Optical Depths. Journals of the Atmospheric Sciences, 1996, 53, 3669-3683.	0.6	41
101	Implications for models and measurements of chemical inhomogeneities among cloud droplets. Tellus, Series B: Chemical and Physical Meteorology, 1992, 44, 208-225.	0.8	40
102	Measurements of the size dependence of the concentration of nonvolatile material in fog droplets. Tellus, Series B: Chemical and Physical Meteorology, 1992, 44, 570-580.	0.8	38
103	Carbonaceous aerosols contributed by traffic and solid fuel burning at a polluted rural site in Northwestern England. Atmospheric Chemistry and Physics, 2011, 11, 1603-1619.	1.9	37
104	The size distribution of submicrometer particles within and about stratocumulus cloud droplets on Mt. Ãreskutan, Sweden. Atmospheric Research, 1989, 24, 89-101.	1.8	36
105	Overview of the NOAA/ESRL Federated Aerosol Network. Bulletin of the American Meteorological Society, 2019, 100, 123-135.	1.7	36
106	Measurements of the size dependence of the concentration of nonvolatile material in fog droplets. Tellus, Series B: Chemical and Physical Meteorology, 1992, 44, 570-580.	0.8	35
107	Phase partitioning for different aerosol species in fog. Tellus, Series B: Chemical and Physical Meteorology, 1992, 44, 545-555.	0.8	34
108	Californian forest fire plumes over Southwestern British Columbia: lidar, sunphotometry, and mountaintop chemistry observations. Atmospheric Chemistry and Physics, 2011, 11, 465-477.	1.9	34

#	Article	IF	CITATIONS
109	Sources of discrepancy between aerosol optical depth obtained from AERONET and in-situ aircraft profiles. Atmospheric Chemistry and Physics, 2012, 12, 2987-3003.	1.9	34
110	Aerosol Data Sources and Their Roles within PARAGON. Bulletin of the American Meteorological Society, 2004, 85, 1511-1522.	1.7	33
111	Overview of the Cumulus Humilis Aerosol Processing Study. Bulletin of the American Meteorological Society, 2009, 90, 1653-1668.	1.7	33
112	Aerosol optical properties at Mauna Loa Observatory: Longâ€range transport from Kuwait?. Geophysical Research Letters, 1992, 19, 581-584.	1.5	32
113	Computer modelling of clouds at Kleiner Feldberg. Journal of Atmospheric Chemistry, 1994, 19, 189-229.	1.4	32
114	A Three-Wavelength Optical Extinction Cell for Measuring Aerosol Light Extinction and Its Application to Determining Light Absorption Coefficient. Aerosol Science and Technology, 2005, 39, 52-67.	1.5	32
115	Scattering and absorption coefficients vs. Chemical composition of fine atmospheric aerosol particles under regional conditions in Hungary. Journal of Aerosol Science, 1998, 29, 1171-1178.	1.8	31
116	An intercomparison of aerosol light extinction and 180° backscatter as derived using in situ instruments and Raman lidar during the INDOEX field campaign. Journal of Geophysical Research, 2002, 107, INX2 13-1.	3.3	31
117	Wet deposition of elemental carbon and sulfate in Sweden. Tellus, Series B: Chemical and Physical Meteorology, 1984, 36B, 262-271.	0.8	30
118	Retrieval and climatology of the aerosol asymmetry parameter in the NOAA aerosol monitoring network. Journal of Geophysical Research, 2006, 111, .	3.3	30
119	Evaluating the PurpleAir monitor as an aerosol light scattering instrument. Atmospheric Measurement Techniques, 2022, 15, 655-676.	1.2	30
120	Relationship between long-range transported atmospheric black carbon and carbon monoxide at a high-altitude background station in East Asia. Atmospheric Environment, 2019, 210, 86-99.	1.9	29
121	Aerosol optical properties during INDOEX based on measured aerosol particle size and composition. Journal of Geophysical Research, 2002, 107, INX2 33-1.	3.3	28
122	Small crystals in cirriform clouds: A case study of residue size distribution, cloud water content and related cloud properties. Atmospheric Research, 1994, 32, 125-141.	1.8	26
123	Atmospheric Radiation Measurements Aerosol Intensive Operating Period: Comparison of aerosol scattering during coordinated flights. Journal of Geophysical Research, 2006, 111, .	3.3	25
124	Parameterization of the Aerosol Upscatter Fraction as Function of the Backscatter Fraction and Their Relationships to the Asymmetry Parameter for Radiative Transfer Calculations. Atmosphere, 2017, 8, 133.	1.0	25
125	Measurements of the size-dependence of solute concentrations in cloud droplets. Tellus, Series B: Chemical and Physical Meteorology, 1989, 41, 24-31.	0.8	24
126	Airborne sampling system for plume monitoring. Atmospheric Environment, 1978, 12, 613-620.	1.1	23

#	Article	IF	CITATIONS
127	Preface to special section: Atmospheric Radiation Measurement Program May 2003 Intensive Operations Period examining aerosol properties and radiative influences. Journal of Geophysical Research, 2006, 111, .	3.3	23
128	Constrained two-stream algorithm for calculating aerosol light absorption coefficient from the Particle Soot Absorption Photometer. Atmospheric Measurement Techniques, 2014, 7, 4049-4070.	1.2	23
129	Contributions of dust and biomass burning to aerosols at a Colorado mountain-top site. Atmospheric Chemistry and Physics, 2015, 15, 13665-13679.	1.9	23
130	An examination of clouds at a mountain-top site in central Sweden: The distribution of solute within cloud droplets. Atmospheric Research, 1990, 25, 3-15.	1.8	22
131	Further developments in closure experiments for surface diffuse irradiance under cloud-free skies at a continental site. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	20
132	In situ aerosol profiles over the Southern Great Plains cloud and radiation test bed site: 2. Effects of mixing height on aerosol properties. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	20
133	Comparisons of aerosol optical depth and surface shortwave irradiance and their effect on the aerosol surface radiative forcing estimation. Journal of Geophysical Research, 2005, 110, .	3.3	20
134	Validation of aerosol extinction and water vapor profiles from routine Atmospheric Radiation Measurement Program Climate Research Facility measurements. Journal of Geophysical Research, 2009, 114, .	3.3	20
135	Annual cycle of Antarctic baseline aerosol: controlled by photooxidation-limited aerosol formation. Atmospheric Chemistry and Physics, 2014, 14, 3083-3093.	1.9	20
136	Measurements of the partitioning of hydrogen peroxide in a stratiform cloud*. Tellus, Series B: Chemical and Physical Meteorology, 2022, 43, 280.	0.8	20
137	Measurements of the absorption coefficient of stratospheric aerosols. Geophysical Research Letters, 1981, 8, 9-12.	1.5	19
138	Absorption of Visible Radiation by Aerosols in the Volcanic Plume of Mount St. Helens. Science, 1981, 211, 834-836.	6.0	19
139	Stratospheric aerosol light absorption before and after El Chichon. Geophysical Research Letters, 1983, 10, 1017-1020.	1.5	19
140	Measurements of the partitioning of hydrogen peroxide in a stratiform cloud*. Tellus, Series B: Chemical and Physical Meteorology, 1991, 43, 280-290.	0.8	19
141	The influence of fog and airmass history on aerosol optical, physical and chemical properties at Pt. Reyes National Seashore. Atmospheric Environment, 2011, 45, 2559-2568.	1.9	19
142	Vertical profiles of optical and microphysical particle properties above the northern Indian Ocean during CARDEX 2012. Atmospheric Chemistry and Physics, 2016, 16, 1045-1064.	1.9	19
143	Vertical profiles of aerosol properties in the summer troposphere of central Europe, scandinavia and the svalbard region. Atmospheric Environment Part A General Topics, 1991, 25, 621-627.	1.3	18
144	SAM-CAAM: A Concept for Acquiring Systematic Aircraft Measurements to Characterize Aerosol Air Masses. Bulletin of the American Meteorological Society, 2017, 98, 2215-2228.	1.7	18

#	Article	IF	CITATIONS
145	The chemistry of sulfur and nitrogen species in a fog system A multiphase approach. Tellus, Series B: Chemical and Physical Meteorology, 1992, 44, 505-521.	0.8	17
146	Scientific Objectives, Measurement Needs, and Challenges Motivating the PARAGON Aerosol Initiative. Bulletin of the American Meteorological Society, 2004, 85, 1503-1510.	1.7	17
147	Decreasing particle number concentrations in a warming atmosphere and implications. Atmospheric Chemistry and Physics, 2012, 12, 2399-2408.	1.9	17
148	Multiple scattering correction factor estimation for aethalometer aerosol absorption coefficient measurement. Aerosol Science and Technology, 2019, 53, 160-171.	1.5	17
149	Aerosol particles and clouds: which particles form cloud droplets?. Tellus, Series B: Chemical and Physical Meteorology, 1998, 50, 59-75.	0.8	16
150	Comment on "Measurement of Aerosol Absorption Coefficient from Teflon Filters using the Integrating Plate and Integrating Sphere Techniques―by D. Campbell, S. Copeland and T. Cahill. Aerosol Science and Technology, 1996, 24, 221-224.	1.5	14
151	A comparison of aerosol optical properties obtained from in situ measurements and retrieved from Sun and sky radiance observations during the May 2003 ARM Aerosol Intensive Observation Period. Journal of Geophysical Research, 2006, 111, .	3.3	14
152	On the operation of the TSI-3020 condensation nuclei counter at altitudes up to 10 km. Atmospheric Environment, 1985, 19, 1385-1387.	1.1	12
153	Using the PARAGON Framework to Establish an Accurate, Consistent, and Cohesive Long-Term Aerosol Record. Bulletin of the American Meteorological Society, 2004, 85, 1535-1548.	1.7	11
154	Airborne Intrumentation Needs for Climate and Atmospheric Research. Bulletin of the American Meteorological Society, 2011, 92, 1193-1196.	1.7	11
155	Wet deposition of elemental carbon and sulfate in Sweden. Tellus, Series B: Chemical and Physical Meteorology, 2022, 36, 262.	0.8	11
156	A statistical examination of the chemical differences between interstitial and scavenged aerosol. Tellus, Series B: Chemical and Physical Meteorology, 2022, 44, 581.	0.8	11
157	Aerosol particles and clouds: which particles form cloud droplets?. Tellus, Series B: Chemical and Physical Meteorology, 1998, 50, 59-75.	0.8	10
158	Temporal variation of aerosol properties at a rural continental site and study of aerosol evolution through growth law analysis. Journal of Geophysical Research, 2006, 111, .	3.3	10
159	Assessment of African desert dust episodes over the southwest Spain at sea level using in situ aerosol optical and microphysical properties. Tellus, Series B: Chemical and Physical Meteorology, 2022, 67, 27482.	0.8	10
160	A statistical examination of the chemical differences between interstitial and scavenged aerosol. Tellus, Series B: Chemical and Physical Meteorology, 1992, 44, 581-592.	0.8	9
161	The Atmospheric Cycle of Elemental Carbon. , 1982, , 3-18.		9
162	Elemental composition of fog interstitial particle size fractions and hydrophobic fractions related to fog droplet nucleation scavenging. Tellus, Series B: Chemical and Physical Meteorology, 2022, 44, 593.	0.8	9

#	Article	IF	CITATIONS
163	Vertical profiles of light absorption and scattering associated with black carbon particle fractions in the springtime Arctic above 79° N. Atmospheric Chemistry and Physics, 2020, 20, 10545-10563.	1.9	9
164	PIXE in complex analytical systems for atmospheric chemistry. Nuclear Instruments & Methods in Physics Research B, 1987, 22, 235-240.	0.6	8
165	Deposition of Particulate Elemental Carbon from the Atmosphere. , 1982, , 379-391.		7
166	Numerical, wind-tunnel, and atmospheric evaluation of a turbulent ground-based inlet sampling system. Aerosol Science and Technology, 2019, 53, 712-727.	1.5	6
167	On the operation of the electrical aerosol analyzer at reduced pressures. Journal of Aerosol Science, 1980, 11, 427-434.	1.8	5
168	Vertical and horizontal variability of aerosol single scattering albedo and hemispheric backscatter fraction over the united states. , 1996, , 780-783.		5
169	The Kleiner Feldberg Cloud Experiment 1990. An Overview. , 1994, , 3-35.		4
170	Elemental composition of fog interstitial particle size fractions and hydrophobic fractions related to fog droplet nucleation scavenging. Tellus, Series B: Chemical and Physical Meteorology, 1992, 44, 593-603.	0.8	3
171	Measurements of the Short-Term Variability of Aqueous-Phase Mass Concentrations in Cloud Droplets. , 1988, , 125-137.		3
172	An assessment of the impact of pollution on global cloud albedo: comment. Tellus, Series B: Chemical and Physical Meteorology, 1985, 37B, 308-309.	0.8	2
173	Phase Partitioning of Aerosol Particles in Clouds at Kleiner Feldberg. , 1994, , 107-127.		2
174	The Influence of Aerosol Particle Composition on Cloud Droplet Formation. , 1994, , 153-171.		2
175	The relative contribution of fluctuations in relative humidity and particulate concentrations to the variability of the scattering coefficient over the North Atlantic. Atmospheric Environment, 1981, 15, 415.	1.1	1
176	Characterisation of aerosol properties and radiative forcing at an anthropogenically perturbed continental site. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science, 1999, 24, 541-546.	0.2	1
177	Reply to "Comments on â€~Why Hasn't Earth Warmed as Much as Expected?'― Journal of Climate, 2012, 2200-2204.	, 25, 1.2	1
178	Comments on "A Theoretical Study of the Wet Removal of Atmospheric Pollutants. Part I: The Redistribution of Aerosol Particles Captured Through Nucleation and Impaction Scavenging by Growing Cloud Drops", and "Part II: The Uptake and Redistribution of (NH4)2SO4Particles and SOGas Simultaneously Scavenged by Growing Cloud Drops". Journals of the Atmospheric Sciences, 1989, 46, 1867-1869.	0.6	0
179	Determination of seasonal, diurnal, and height resolved average number concentration in a pollution impacted rural continental location. , 2013, , .		0

180 Computer Modelling of Clouds at Kleiner Feldberg. , 1994, , 189-229.

#	Article	IF	CITATIONS
181	Microphysics of Clouds at Kleiner Feldberg. , 1994, , 59-85.		Ο