Mahdi Sharifzadeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6173869/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions. Progress in Energy and Combustion Science, 2019, 71, 1-80.	31.2	316
2	Inexpensive ionic liquids: [HSO ₄] ^{â^'} -based solvent production at bulk scale. Green Chemistry, 2014, 16, 3098-3106.	9.0	309
3	Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression. Renewable and Sustainable Energy Reviews, 2019, 108, 513-538.	16.4	187
4	Integration of process design and control: A review. Chemical Engineering Research and Design, 2013, 91, 2515-2549.	5.6	107
5	Supply chain network design and operation: Systematic decision-making for centralized, distributed, and mobile biofuel production using mixed integer linear programming (MILP) under uncertainty. Biomass and Bioenergy, 2015, 81, 401-414.	5.7	81
6	Bioethanol production from various waste papers: Economic feasibility and sensitivity analysis. Applied Energy, 2013, 111, 1172-1182.	10.1	76
7	China's roadmap to low-carbon electricity and water: Disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and storage. Applied Energy, 2019, 235, 31-42.	10.1	60
8	Technology performance and economic feasibility of bioethanol production from various waste papers. Energy and Environmental Science, 2012, 5, 5717-5730.	30.8	57
9	Integrated renewable electricity generation considering uncertainties: The UK roadmap to 50% power generation from wind and solar energies. Renewable and Sustainable Energy Reviews, 2017, 72, 385-398.	16.4	51
10	Multi-objective design and operation of Solid Oxide Fuel Cell (SOFC) Triple Combined-cycle Power Generation systems: Integrating energy efficiency and operational safety. Applied Energy, 2017, 185, 345-361.	10.1	51
11	Integrated biorefineries: CO2 utilization for maximum biomass conversion. Renewable and Sustainable Energy Reviews, 2015, 47, 151-161.	16.4	49
12	An integrated process for biomass pyrolysis oil upgrading: A synergistic approach. Biomass and Bioenergy, 2015, 76, 108-117.	5.7	40
13	Quantification of technological progress in greenhouse gas (CHC) capture and mitigation using patent data. Energy and Environmental Science, 2019, 12, 2789-2805.	30.8	35
14	Optimal selection of control structure using a steady-state inversely controlled process model. Computers and Chemical Engineering, 2012, 38, 126-138.	3.8	31
15	MEA-based CO2 capture integrated with natural gas combined cycle or pulverized coal power plants: Operability and controllability through integrated design and control. Journal of Cleaner Production, 2019, 207, 271-283.	9.3	30
16	Inherently safe and economically optimal design using multi-objective optimization: The case of a refrigeration cycle. Chemical Engineering Research and Design, 2016, 104, 254-267.	5.6	28
17	Carbon capture from pulverized coal power plant (PCPP): Solvent performance comparison at an industrial scale. Applied Energy, 2016, 163, 423-435.	10.1	28
18	Integrated design and control using a dynamic inversely controlled process model. Computers and Chemical Engineering, 2013, 48, 121-134.	3.8	25

#	Article	IF	CITATIONS
19	Implementation of a steady-state inversely controlled process model for integrated design and control of an ETBE reactive distillation. Chemical Engineering Science, 2013, 92, 21-39.	3.8	19
20	Decarbonisation of olefin processes using biomass pyrolysis oil. Applied Energy, 2015, 149, 404-414.	10.1	18
21	Recovery of excreted n-butanol from genetically engineered cyanobacteria cultures: Process modelling to quantify energy and economic costs of different separation technologies. Algal Research, 2019, 37, 92-102.	4.6	16
22	Carbon capture from natural gas combined cycle power plants: Solvent performance comparison at an industrial scale. AICHE Journal, 2016, 62, 166-179.	3.6	14
23	Integrated and inherently safe design and operation of a mobile power generation: Process intensification through microreactor reformer and HT-PEMFC. International Journal of Hydrogen Energy, 2021, 46, 23839-23854.	7.1	14
24	Energy Induced Separation Network Synthesis of an Olefin Compression Section: A Case Study. Industrial & Engineering Chemistry Research, 2011, 50, 1610-1623.	3.7	13
25	Comparative studies of CO2 capture solvents for gas-fired power plants: Integrated modelling and pilot plant assessments. International Journal of Greenhouse Gas Control, 2015, 43, 124-132.	4.6	10
26	Implication of Side Reactions in Iterative Biopolymer Synthesis: The Case of Membrane Enhanced Peptide Synthesis. Industrial & Engineering Chemistry Research, 2017, 56, 6796-6804.	3.7	8
27	Modelling the kinetics of pyrolysis oil hydrothermal upgrading based on the connectivity of oxygen atoms, quantified by 31 P-NMR. Biomass and Bioenergy, 2017, 98, 272-290.	5.7	6
28	Developing group contribution models for the estimation of Atmospheric Lifetime and Minimum Ignition Energy. Chemical Engineering Science, 2020, 226, 115866.	3.8	4
29	Iterative peptide synthesis in membrane cascades: Untangling operational decisions. Computers and Chemical Engineering, 2018, 115, 275-285.	3.8	3
30	Multiscale modeling and optimization programing of solid oxide fuel cell systems. , 2020, , 161-183.		0
31	Synthesis, integration, and intensification of solid oxide fuel cell systems: process systems engineering perspective. , 2020, , 185-215.		0
32	Fault detection, loss prevention, hazard mitigation, and safe operation of solid oxide fuel cell systems. , 2020, , 255-274.		0
33	Design and operation of solid oxide fuel cell systems: challenges and future research directions. , 2020, , 445-463.		0
34	Optimal controlled variable selection using a nonlinear simulation-optimization framework. Computer Aided Chemical Engineering, 2011, 29, 597-601.	0.5	0