
Francisco José Gimeno Sales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/61737/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Switching Pattern Improvement for One-Cycle Zero-Integral-Error Current Controller. IEEE Access, 2022, 10, 158-167.	4.2	2
2	Energy Efficiency Optimization in Battery-Based Photovoltaic Pumping Schemes. IEEE Access, 2022, 10, 54064-54078.	4.2	9
3	Photovoltaic Water Pumping: Comparison Between Direct and Lithium Battery Solutions. IEEE Access, 2021, 9, 101147-101163.	4.2	13
4	One-Cycle Zero-Integral-Error Current Control for Shunt Active Power Filters. Electronics (Switzerland), 2020, 9, 2008.	3.1	5
5	Small Wind Turbine Emulator Based on Lambda-Cp Curves Obtained under Real Operating Conditions. Energies, 2019, 12, 2456.	3.1	15
6	Deterministic Algorithm for Selective Shunt Active Power Compensators According to IEEE Std. 1459. Energies, 2017, 10, 1791.	3.1	1
7	Instantaneous approach to IEEE Std. 1459 power terms and quality indices. Electric Power Systems Research, 2015, 125, 228-234.	3.6	15
8	Measurement System for a Power Quality Improvement Structure Based on IEEE Std.1459. IEEE Transactions on Instrumentation and Measurement, 2013, 62, 3177-3188.	4.7	15
9	Enhanced Grid Fundamental Positive-Sequence Digital Synchronization Structure. IEEE Transactions on Power Delivery, 2013, 28, 226-234.	4.3	32
10	Discussion on Useless Active and Reactive Powers Contained in the IEEE Standard 1459. IEEE Transactions on Power Delivery, 2011, 26, 640-649.	4.3	13
11	Meaningful Resolution of the IEEE Std. 1459 Unbalanced Power. IEEE Transactions on Power Systems, 2011, 26, 1783-1784.	6.5	2
12	Non-fundamental effective apparent power defined through an instantaneous power approach. International Journal of Electrical Power and Energy Systems, 2011, 33, 1711-1720.	5.5	7
13	New Resolution of the Unbalance Power According to Std. 1459. IEEE Transactions on Power Delivery, 2010, 25, 341-350.	4.3	13
14	Improved Shunt Active Power Compensator for IEEE Standard 1459 Compliance. IEEE Transactions on Power Delivery, 2010, 25, 2692-2701.	4.3	32
15	Selective Compensation in Four-Wire Electric Systems Based on a New Equivalent Conductance Approach. IEEE Transactions on Industrial Electronics, 2009, 56, 2862-2874.	7.9	24
16	Selective Shunt Active Power Compensator Applied in Four-Wire Electrical Systems Based on IEEE Std. 1459. IEEE Transactions on Power Delivery, 2008, 23, 2563-2574.	4.3	26
17	Achieving Maximum Efficiency in Three-Phase Systems With a Shunt Active Power Compensator Based on IEEE Std. 1459. IEEE Transactions on Power Delivery, 2008, 23, 812-822.	4.3	22

18 Photovoltaic inverters used as active filters for improvement of IV distribution networks., 2008,,.

#	Article	IF	CITATIONS
19	Selective Shunt Active Power Compensator in Four Wire Electrical Systems Using Symmetrical Components. Electric Power Components and Systems, 2007, 35, 97-118.	1.8	12
20	Approach to unbalance power active compensation under linear load unbalances and fundamental voltage asymmetries. International Journal of Electrical Power and Energy Systems, 2007, 29, 526-539.	5.5	34
21	Shunt active power compensator/photovoltaic generator for delta loads using the symmetrical components transformation. , 2005, , .		1
22	New optimization in photovoltaic installations with energy balance with the three-phase utility. , 2005, , .		3
23	Modelling and simulation of three phase power active compensator with Matlab/Simulink. , O, , .		6
24	Control of shunt unbalanced power active compensators for reactive and asymmetry elimination in four wire electrical systems using symmetrical components. , 0, , .		5
25	Direct coupling between photovoltaic module and a PWM converter. , 0, , .		4