Yao-ming Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6173618/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Maximizing productivity of CHO cellâ€based fedâ€batch culture using chemically defined media conditions and typical manufacturing equipment. Biotechnology Progress, 2010, 26, 1400-1410.	2.6	288
2	Perfusion seed cultures improve biopharmaceutical fedâ€batch production capacity and product quality. Biotechnology Progress, 2014, 30, 616-625.	2.6	114
3	Concentrated fed-batch cell culture increases manufacturing capacity without additional volumetric capacity. Journal of Biotechnology, 2016, 217, 1-11.	3.8	92
4	Addition of Valproic Acid to CHO Cell Fed-Batch Cultures Improves Monoclonal Antibody Titers. Molecular Biotechnology, 2014, 56, 421-428.	2.4	73
5	Discovery and Investigation of Misincorporation of Serine at Asparagine Positions in Recombinant Proteins Expressed in Chinese Hamster Ovary Cells. Journal of Biological Chemistry, 2009, 284, 32686-32694.	3.4	67
6	Application of highâ€throughput miniâ€bioreactor system for systematic scaleâ€down modeling, process characterization, and control strategy development. Biotechnology Progress, 2015, 31, 1623-1632.	2.6	59
7	Control of misincorporation of serine for asparagine during antibody production using CHO cells. Biotechnology and Bioengineering, 2010, 107, 116-123.	3.3	58
8	Advanced process monitoring and feedback control to enhance cell culture process production and robustness. Biotechnology and Bioengineering, 2015, 112, 2495-2504.	3.3	58
9	COMPARISON OF DEVELOPMENT AND PHOTOSYNTHETIC GROWTH FOR FILAMENT CLUMPS AND REGENERATED MICROPLANTLET CULTURES OF AGARDHIELLA SUBULATA (RHODOPHYTA, GIGARTINALES). Journal of Phycology, 1998, 34, 893-901.	2.3	28
10	Dynamics of Oxygen Evolution and Biomass Production during Cultivation of Agardhiella subulata Microplantlets in a Bubble-Column Photobioreactor under Medium Perfusion. Biotechnology Progress, 2002, 18, 62-71.	2.6	20
11	Identifying and eliminating cell culture process variability. Pharmaceutical Bioprocessing, 2014, 2, 519-534.	0.8	20
12	Optimal temperature and photoperiod for the cultivation ofAgardhiella subulata microplantlets in a bubble-column photobioreactor. Biotechnology and Bioengineering, 2002, 79, 135-144.	3.3	18
13	Cultivation of Microplantlets Derived from the Marine Red Alga Agardhiella subulata in a Stirred Tank Photobioreactor. Biotechnology Progress, 2003, 19, 418-427.	2.6	17
14	Identifying the differences in mechanisms of mycophenolic acid controlling fucose content of glycoproteins expressed in different CHO cell lines. Biotechnology and Bioengineering, 2016, 113, 2367-2376.	3.3	15
15	The role of high-throughput mini-bioreactors in process development and process optimization for mammalian cell culture. Pharmaceutical Bioprocessing, 2015, 3, 397-410.	0.8	4
16	Leveraging highâ€ŧhroughput technology to accelerate the time to clinic: A case study of a mAb. Engineering in Life Sciences, 2016, 16, 143-151.	3.6	2
17	High Performance Cell Culture Platform Technology for MAb Production. , 2005, , 459-464.		1
18	Development of Fed-Batch Process Producing Monoclonal Antibodies Using In-House Media. , 2005, , 659-661.		0