Fernando Dorado FernÃ;ndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6172625/publications.pdf Version: 2024-02-01

		126907	206112
113	3,125	33	48
papers	citations	h-index	g-index
110	110	110	2207
113	113	113	2387
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Electrochemical promotion of ethanol partial oxidation and reforming reactions for hydrogen production. Renewable Energy, 2022, 183, 515-523.	8.9	12
2	Gasification versus fast pyrolysis bio-oil production: A life cycle assessment. Journal of Cleaner Production, 2022, 336, 130373.	9.3	22
3	Boosting hydrogen and chemicals production through ethanol electro-reforming on Pt-transition metal anodes. Journal of Energy Chemistry, 2022, 70, 394-406.	12.9	17
4	Influence of Pt/Ru anodic ratio on the valorization of ethanol by PEM electrocatalytic reforming towards value-added products. Journal of Energy Chemistry, 2021, 56, 264-275.	12.9	20
5	Fast pyrolysis as an alternative to the valorization of olive mill wastes. Journal of the Science of Food and Agriculture, 2021, 101, 2650-2658.	3.5	10
6	Valorization of olive oil industry subproducts: ash and olive pomace fast pyrolysis. Food and Bioproducts Processing, 2021, 125, 37-45.	3.6	25
7	Membrane-Less Ethanol Electrooxidation over Pd-M (M: Sn, Mo and Re) Bimetallic Catalysts. Catalysts, 2021, 11, 541.	3.5	3
8	Catalytic effect of alkali and alkaline earth metals on fast pyrolysis preâ€ŧreatment of agricultural waste. Biofuels, Bioproducts and Biorefining, 2021, 15, 1473-1484.	3.7	13
9	Fast pyrolysis of agroindustrial wastes blends: Hydrocarbon production enhancement. Journal of Analytical and Applied Pyrolysis, 2021, 157, 105242.	5.5	11
10	Additional pathways for the ethanol electro-reforming knowledge: The role of the initial concentration on the product yields. Fuel Processing Technology, 2021, 222, 106954.	7.2	8
11	Preliminary Design of a Self-Sufficient Electrical Storage System Based on Electrolytic Hydrogen for Power Supply in a Residential Application. Applied Sciences (Switzerland), 2021, 11, 9582.	2.5	0
12	Hydrogen storage for off-grid power supply based on solar PV and electrochemical reforming of ethanol-water solutions. Renewable Energy, 2020, 147, 639-649.	8.9	31
13	Electrochemical reforming of ethanol in a membrane-less reactor configuration. Chemical Engineering Journal, 2020, 379, 122289.	12.7	32
14	Process simulation and economic feasibility assessment of the methanol production via tri-reforming using experimental kinetic equations. International Journal of Hydrogen Energy, 2020, 45, 26623-26636.	7.1	9
15	Exergetic and Economic Improvement for a Steam Methane-Reforming Industrial Plant: Simulation Tool. Energies, 2020, 13, 3807.	3.1	13
16	Influence of the GDL and assembly mode of a PEM cell on the ethanol revalorization into chemicals. Chemical Engineering Journal, 2020, 402, 125298.	12.7	20
17	Over-faradaic hydrogen production in methanol electrolysis cells. Chemical Engineering Journal, 2020, 396, 125217.	12.7	33
18	Optimization of the catalytic support and membrane for the electrochemical reforming of ethanol in alkaline media. Journal of Chemical Technology and Biotechnology, 2019, 94, 3698-3705.	3.2	9

#	Article	IF	CITATIONS
19	Influence of the carbon support on the Pt–Sn anodic catalyst for the electrochemical reforming of ethanol. International Journal of Hydrogen Energy, 2019, 44, 10616-10626.	7.1	25
20	Silica-Based Catalysts for Fuel Applications. , 2019, , 143-161.		2
21	Taylor-made aerogels through a freeze-drying process: economic assessment. Journal of Sol-Gel Science and Technology, 2019, 89, 436-447.	2.4	2
22	Electrochemical promotion for hydrogen production via ethanol steam reforming reaction. Applied Catalysis B: Environmental, 2019, 243, 355-364.	20.2	22
23	Kinetics of the hydrogenation of CO 2 to methanol at atmospheric pressure using a Pd-Cu-Zn/SiC catalyst. Fuel Processing Technology, 2018, 173, 173-181.	7.2	32
24	Hydrogen from electrochemical reforming of ethanol assisted by sulfuric acid addition. Applied Catalysis B: Environmental, 2018, 231, 310-316.	20.2	32
25	Stability Testing of Pt x Sn1Ââ^âÂx /C Anodic Catalyst for Renewable Hydrogen Production Via Electrochemical Reforming of Ethanol. Electrocatalysis, 2018, 9, 293-301.	3.0	14
26	Hydrogenation of CO ₂ to Methanol at Atmospheric Pressure over Cu/ZnO Catalysts: Influence of the Calcination, Reduction, and Metal Loading. Industrial & Engineering Chemistry Research, 2017, 56, 1979-1987.	3.7	57
27	Optimization of the Pd/Cu ratio in Pd-Cu-Zn/SiC catalysts for the CO 2 hydrogenation to methanol at atmospheric pressure. Journal of CO2 Utilization, 2017, 22, 71-80.	6.8	54
28	Effect of support nature on the cobalt-catalyzed CO2 hydrogenation. Journal of CO2 Utilization, 2017, 21, 562-571.	6.8	91
29	Enhancement of Ammonia Synthesis on a Co ₃ Mo ₃ N-Ag Electrocatalyst in a K-βAl ₂ O ₃ Solid Electrolyte Cell. ACS Sustainable Chemistry and Engineering, 2017, 5, 8844-8851.	6.7	17
30	Influence of Cobalt Precursor on Efficient Production of Commercial Fuels over FTS Co/SiC Catalyst. Catalysts, 2016, 6, 98.	3.5	24
31	Electrochemical promotion and characterization of PdZn alloy catalysts with K and Na ionic conductors for pure gaseous CO2 hydrogenation. Journal of CO2 Utilization, 2016, 16, 375-383.	6.8	12
32	Kinetic, energetic and exergetic approach to the methane tri-reforming process. International Journal of Hydrogen Energy, 2016, 41, 19339-19348.	7.1	38
33	Carbon Nanofiber-Based Palladium/Zinc Catalysts for the Hydrogenation of Carbon Dioxide to Methanol at Atmospheric Pressure. Industrial & Engineering Chemistry Research, 2016, 55, 3556-3567.	3.7	38
34	CO2 Hydrogenation to Methanol at Atmospheric Pressure: Influence of the Preparation Method of Pd/ZnO Catalysts. Catalysis Letters, 2016, 146, 373-382.	2.6	48
35	Catalytic and kinetic analysis of the methane tri-reforming over a Ni–Mg/β-SiC catalyst. International Journal of Hydrogen Energy, 2015, 40, 8677-8687	7.1	49
36	Preparation of Ni–Mg/β-SiC catalysts for the methane tri-reforming: Effect of the order of metal impregnation. Applied Catalysis B: Environmental, 2015, 164, 316-323.	20.2	50

FERNANDO DORADO

#	Article	IF	CITATIONS
37	Influence of alkaline and alkaline-earth cocations on the performance of Ni/β-SiC catalysts in the methane tri-reforming reaction. Applied Catalysis B: Environmental, 2014, 148-149, 322-329.	20.2	34
38	Influence of the support on the catalytic behaviour of Ni catalysts for the dry reforming reaction and the tri-reforming process. Journal of Molecular Catalysis A, 2014, 395, 108-116.	4.8	54
39	Electrochemical investigation of O2-exposed Pd electrodes supported on YSZ. Journal of Applied Electrochemistry, 2013, 43, 417-424.	2.9	1
40	Autothermal reforming and water–gas shift double bed reactor for H2 production from ethanol. Chemical Engineering and Processing: Process Intensification, 2013, 74, 14-18.	3.6	19
41	Experimental data and kinetic modeling of the catalytic and electrochemically promoted CH4 oxidation over Pd catalyst-electrodes. Chemical Engineering Journal, 2013, 225, 315-322.	12.7	7
42	Simultaneous production of H2 and C2 hydrocarbons by using a novel configuration solid-electrolyteÂ+Âfixed bed reactor. International Journal of Hydrogen Energy, 2013, 38, 3111-3122.	7.1	13
43	From biomass to pure hydrogen: Electrochemical reforming of bio-ethanol in a PEM electrolyser. Applied Catalysis B: Environmental, 2013, 134-135, 302-309.	20.2	93
44	Coupling catalysis and gas phase electrocatalysis for the simultaneous production and separation of pure H2 and C2 hydrocarbons from methane and natural gas. Applied Catalysis B: Environmental, 2013, 142-143, 298-306.	20.2	10
45	Enhanced electropromotion of methane combustion on palladium catalysts deposited on highly porous supports. Applied Catalysis B: Environmental, 2013, 132-133, 80-89.	20.2	19
46	Methane tri-reforming over a Ni/Î ² -SiC-based catalyst: Optimizing the feedstock composition. International Journal of Hydrogen Energy, 2013, 38, 4524-4532.	7.1	35
47	Enhancing the combustion of natural gas by electrochemical promotion of catalysis. Electrochemistry Communications, 2012, 23, 9-12.	4.7	6
48	Precursor influence and catalytic behaviour of Ni/CeO2 and Ni/SiC catalysts for the tri-reforming process. Applied Catalysis A: General, 2012, 431-432, 49-56.	4.3	68
49	Electrochemical promotion of methane oxidation on Pd catalyst-electrodes deposited on Y2O3-stabilized-ZrO2. Applied Catalysis B: Environmental, 2012, 128, 48-54.	20.2	19
50	Electrochemical promotion of methane oxidation on impregnated and sputtered Pd catalyst-electrodes deposited on YSZ. Applied Catalysis B: Environmental, 2012, 127, 18-27.	20.2	15
51	Characterization of Pd catalyst-electrodes deposited on YSZ: Influence of the preparation technique and the presence of a ceria interlayer. Applied Surface Science, 2012, 261, 671-678.	6.1	10
52	Methane oxidation on Pd/YSZ by electrochemical promotion. Solid State Ionics, 2012, 225, 376-381.	2.7	14
53	Simultaneous production of H2 and C2 hydrocarbons by gas phase electrocatalysis. Applied Catalysis B: Environmental, 2012, 113-114, 192-200.	20.2	13
54	Oscillatory behavior of Rh/YSZ under electropromoted conditions. Chemical Physics Letters, 2012, 519-520, 89-92.	2.6	2

#	Article	IF	CITATIONS
55	Electrochemical reforming of ethanol–water solutions for pure H2 production in a PEM electrolysis cell. International Journal of Hydrogen Energy, 2012, 37, 9504-9513.	7.1	114
56	Nickel supported carbon nanofibers as an active and selective catalyst for the gas-phase hydrogenation of 2-tert-butylphenol. Journal of Colloid and Interface Science, 2012, 380, 173-181.	9.4	5
57	Electrochemical activation of a non noble metal catalyst for the water–gas shift reaction. Catalysis Communications, 2011, 15, 6-9.	3.3	22
58	Nano-Scale Au Supported on Carbon Materials for the Low Temperature Water Gas Shift (WGS) Reaction. Catalysts, 2011, 1, 155-174.	3.5	7
59	Electrochemical Promotion of CH ₄ Combustion over a Pd/CeO ₂ –YSZ Catalyst. Fuel Cells, 2011, 11, 131-139.	2.4	14
60	Enhanced H2 formation by electrochemical promotion in a single chamber steam electrolysis cell. Applied Catalysis B: Environmental, 2011, , .	20.2	4
61	Development of a new electrochemical catalyst with an electrochemically assisted regeneration ability for H2 production at low temperatures. Journal of Catalysis, 2010, 274, 251-258.	6.2	35
62	Hydrocarbon selective catalytic reduction of NO over Cu/Fe-pillared clays: Diffuse reflectance infrared spectroscopy studies. Journal of Molecular Catalysis A, 2010, 332, 45-52.	4.8	13
63	Preferential CO oxidation in hydrogen-rich stream over an electrochemically promoted Pt catalyst. Applied Catalysis B: Environmental, 2010, 94, 281-287.	20.2	22
64	Pt/K–βAl2O3 solid electrolyte cell as a "smart electrochemical catalyst―for the effective removal of NOx under wet reaction conditions. Catalysis Today, 2009, 146, 330-335.	4.4	14
65	Use of potassium conductors in the electrochemical promotion of environmental catalysis. Catalysis Today, 2009, 146, 293-298.	4.4	8
66	Complete oxidation of methane on Pd/YSZ and Pd/CeO2/YSZ by electrochemical promotion. Catalysis Today, 2009, 146, 326-329.	4.4	31
67	Preparation and characterization of a low particle size Pt/C catalyst electrode for the simultaneous electrochemical promotion of CO and C3H6 oxidation. Applied Catalysis A: General, 2009, 365, 274-280.	4.3	16
68	An electrochemically assisted NO storage/reduction catalyst operating under fixed lean burn conditions. Catalysis Communications, 2009, 11, 247-251.	3.3	15
69	Towards a new definition of EPOC parameters for anionic electrochemical catalysts: case of propene combustion. Journal of Applied Electrochemistry, 2008, 38, 1083-1088.	2.9	9
70	Electrochemical promotion of Pt impregnated catalyst for the treatment of automotive exhaust emissions. Journal of Applied Electrochemistry, 2008, 38, 1151-1157.	2.9	19
71	Influence of the reaction conditions on the electrochemical promotion by potassium for the selective catalytic reduction of N2O by C3H6 on platinum. Applied Catalysis B: Environmental, 2008, 78, 222-231.	20.2	26
72	A new improvement of catalysis by solid-state electrochemistry: An electrochemically assisted NOx storage/reduction catalyst. Journal of Catalysis, 2008, 259, 54-65.	6.2	27

#	Article	IF	CITATIONS
73	Electrochemical activation of Pt catalyst by potassium for low temperature CO deep oxidation. Catalysis Communications, 2008, 9, 17-20.	3.3	33
74	Selective catalytic reduction of NO by propene in the presence of oxygen and water over catalysts prepared by the modified sol–gel method. Catalysis Communications, 2007, 8, 736-740.	3.3	3
75	Influence of the reaction temperature on the electrochemical promoted catalytic behaviour of platinum impregnated catalysts for the reduction of nitrogen oxides under lean burn conditions. Applied Catalysis A: General, 2007, 321, 86-92.	4.3	36
76	Hydroisomerization of a refinery naphtha stream over platinum zeolite-based catalysts. Chemical Engineering Journal, 2007, 126, 13-21.	12.7	35
77	Effect of the binder content on the catalytic performance of beta-based catalysts. Journal of Molecular Catalysis A, 2007, 273, 109-113.	4.8	33
78	Low-temperature propene combustion over Pt/K-βAl2O3 electrochemical catalyst: Characterization, catalytic activity measurements, and investigation of the NEMCA effect. Journal of Catalysis, 2007, 251, 474-484.	6.2	59
79	Electrochemical promotion of platinum impregnated catalyst for the selective catalytic reduction of NO by propene in presence of oxygen. Applied Catalysis B: Environmental, 2007, 73, 42-50.	20.2	73
80	Ti-pillared clays: synthesis and general characterization. Clays and Clay Minerals, 2006, 54, 737-747.	1.3	34
81	Kinetic Model of the n-Octane Hydroisomerization on PtBeta Agglomerated Catalyst:  Influence of the Reaction Conditions. Industrial & Engineering Chemistry Research, 2006, 45, 978-985.	3.7	16
82	Copper ion-exchanged and impregnated Fe-pillared claysStudy of the influence of the synthesis conditions on the activity for the selective catalytic reduction of NO with C3H6. Applied Catalysis A: General, 2006, 305, 189-196.	4.3	33
83	Hydroisomerization of C6–C8 n-alkanes, cyclohexane and benzene over palladium and platinum beta catalysts agglomerated with bentonite. Applied Catalysis A: General, 2006, 314, 248-255.	4.3	30
84	Preparation of Cu-ion-exchanged Fe-PILCs for the SCR of NO by propene. Applied Catalysis B: Environmental, 2006, 65, 175-184.	20.2	18
85	Influence of the ion exchanged metal (Cu, Co, Ni and Mn) on the selective catalytic reduction of NOX over mordenite and ZSM-5. Journal of Molecular Catalysis A, 2005, 225, 47-58.	4.8	86
86	Hydroisomerization of n-octane over platinum catalysts with or without binder. Applied Catalysis A: General, 2005, 282, 15-24.	4.3	70
87	Influence of the Si/Al ratio in the hydroisomerization of n-octane over platinum and palladium beta zeolite-based catalysts with or without binder. Applied Catalysis A: General, 2005, 289, 205-213.	4.3	31
88	Study by in situ FTIR of the SCR of NO by propene on Cu2+ ion-exchanged Ti-PILC. Journal of Molecular Catalysis A, 2005, 230, 23-28.	4.8	30
89	Effect of the metal loading in the hydroisomerization of n-octane over beta agglomerated zeolite based catalysts. Applied Catalysis A: General, 2005, 294, 215-225.	4.3	70
90	Hydroisomerization of a Refinery Naphtha Stream over Agglomerated Pd Zeolites. Industrial & Engineering Chemistry Research, 2005, 44, 9050-9058.	3.7	15

#	Article	IF	CITATIONS
91	Influence of the Operating Parameters on the Selective Catalytic Reduction of NO with Hydrocarbons Using Cu-Ion-Exchanged Titanium-Pillared Interlayer Clays (Ti-PILCs). Industrial & Engineering Chemistry Research, 2005, 44, 2955-2965.	3.7	16
92	SCR of NO by Propene on Monometallic (Co or Ni) and Bimetallic (Co/Ag or Ni/Ag) Mordenite-Based Catalysts. Industrial & Engineering Chemistry Research, 2005, 44, 8988-8996.	3.7	18
93	Influence of palladium incorporation technique on n-butane hydroisomerization over HZSM-5/bentonite catalysts. Applied Catalysis A: General, 2004, 274, 79-85.	4.3	10
94	Influence of the Binder on then-Octane Hydroisomerization over Palladium-Containing Zeolite Catalysts. Industrial & Engineering Chemistry Research, 2004, 43, 8217-8225.	3.7	55
95	Cation exchanged and impregnated Ti-pillared clays for selective catalytic reduction of NOx by propylene. Applied Catalysis B: Environmental, 2003, 43, 43-56.	20.2	85
96	Synthesis and Characterization of Cuâ^'TiPILCs for Selective Catalytic Reduction of NO by Propylene in the Presence of Oxygen and H2O:Â Influence of the Calcination Temperature, the Copper Content, and the Cation Promoter (Ce/Ag). Industrial & Engineering Chemistry Research, 2003, 42, 3871-3880.	3.7	7
97	Characterization and Catalytic Properties of Titanium-Pillared Clays Prepared at Laboratory and Pilot Scales:Â A Comparative Study. Industrial & Engineering Chemistry Research, 2003, 42, 2783-2790.	3.7	11
98	PREPARATION AND CHARACTERIZATION OF Ti-PILLARED CLAYS USING TI ALKOXIDES. INFLUENCE OF THE SYNTHESIS PARAMETERS. Clays and Clay Minerals, 2003, 51, 41-51.	1.3	27
99	Hydroisomerization of n-Butane over Pd/HZSM-5 and Pd/Hmordenite with and without binder. Studies in Surface Science and Catalysis, 2002, 142, 707-714.	1.5	5
100	Metal loaded Ti-pillared clays for selective catalytic reduction of NO by propylene. Studies in Surface Science and Catalysis, 2002, , 723-730.	1.5	6
101	Influence of cocations on the activity of Co-MOR for NO/N2O SCR by propene. Studies in Surface Science and Catalysis, 2002, 142, 731-738.	1.5	3
102	Assembly of a Multiphase Bioreactor for Laboratory Demonstrations: Study of the Oxygen-Transfer Efficiency in Activated Sludge. The Chemical Educator, 2002, 7, 90-95.	0.0	4
103	Hydroisomerization of n-butane over Pd/HZSM-5 and Pd/HÎ ² with and without binder. Applied Catalysis A: General, 2002, 236, 235-243.	4.3	80
104	Influence of the synthesis conditions on the preparation of titanium-pillared clays using hydrolyzed titanium ethoxide as the pillaring agent. Microporous and Mesoporous Materials, 2002, 54, 155-165.	4.4	61
105	Influence of Clay Binders on the Performance of Pd/HZSM-5 Catalysts for the Hydroisomerization ofn-Butane. Industrial & amp; Engineering Chemistry Research, 2001, 40, 3428-3434.	3.7	63
106	n-Butane hydroisomerization over Pd/HZSM-5 catalysts. Palladium loaded by ion exchange. Microporous and Mesoporous Materials, 2001, 42, 245-254.	4.4	15
107	Hydroisomerization of n-butane over hybrid catalysts. Applied Catalysis A: General, 2001, 217, 69-78.	4.3	6
108	Effect of zeolite pore geometry on isomerization of n-butane. Applied Catalysis A: General, 2000, 190, 233-239.	4.3	19

#	Article	IF	CITATIONS
109	n-Butane isomerization over H-mordenite: role of the monomolecular mechanism. Applied Catalysis A: General, 2000, 196, 225-231.	4.3	23
110	The role of sodium montmorillonite on bounded zeolite-type catalysts. Applied Clay Science, 2000, 16, 273-287.	5.2	35
111	Characterization of Ni and Pd supported on H-mordenite catalysts: Influence of the metal loading method. Applied Catalysis A: General, 1998, 169, 137-150.	4.3	88
112	n-Butane Hydroisomerization over Pd/HZSM-5 Catalysts. 1. Palladium Loaded by Impregnation. Industrial & Engineering Chemistry Research, 1998, 37, 2592-2600.	3.7	22
113	n-Butane Hydroisomerization over Pt/HZSM-5 Catalysts. Industrial & Engineering Chemistry Research, 1997, 36, 4797-4808.	3.7	33