Harald Hübner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6172473/publications.pdf

Version: 2024-02-01

430874 265206 1,961 51 18 42 citations h-index g-index papers 52 52 52 2743 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Structural insights into ligand recognition, activation, and signaling of the \hat{l}_{\pm} _{2A} adrenergic receptor. Science Advances, 2022, 8, eabj5347.	10.3	12
2	Strukturbasierte Entwicklung von Gâ€Protein bevorzugenden μâ€Opioidrezeptor Agonisten. Angewandte Chemie, 2022, 134, .	2.0	0
3	Development of disulfide-functionalized peptides covalently binding G protein-coupled receptors. Bioorganic and Medicinal Chemistry, 2022, 61, 116720.	3.0	1
4	Binding pathway determines norepinephrine selectivity for the human \hat{l}^21AR over \hat{l}^22AR . Cell Research, 2021, 31, 569-579.	12.0	65
5	Presynaptic vesicular accumulation is required for antipsychotic efficacy in psychotic-like rats. Journal of Psychopharmacology, 2021, 35, 65-77.	4.0	4
6	Homobivalent Dopamine D2 Receptor Ligands Modulate the Dynamic Equilibrium of D2 Monomers and Homo- and Heterodimers. ACS Chemical Biology, 2021, 16, 371-379.	3.4	10
7	Functionally selective activation of the dopamine receptor D2 is mirrored by the protein expression profiles. Scientific Reports, 2021, 11, 3501.	3.3	2
8	Abolishing Dopamine D _{2long} /D ₃ Receptor Affinity of Subtype-Selective Carbamoylguanidine-Type Histamine H ₂ Receptor Agonists. Journal of Medicinal Chemistry, 2021, 64, 8684-8709.	6.4	8
9	Visualization of \hat{l}^2 -adrenergic receptor dynamics and differential localization in cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 2021, $118, \ldots$	7.1	30
10	Optimizing the Expression of Human Dopamine Receptors in Escherichia coli. International Journal of Molecular Sciences, 2021, 22, 8647.	4.1	1
11	Fluorescence Labeling of Neurotensin(8–13) via Arginine Residues Gives Molecular Tools with High Receptor Affinity. ACS Medicinal Chemistry Letters, 2020, 11, 16-22.	2.8	17
12	Selective and Washâ€Resistant Fluorescent Dihydrocodeinone Derivatives Allow Singleâ€Molecule Imaging of νâ€Opioid Receptor Dimerization. Angewandte Chemie - International Edition, 2020, 59, 5958-5964.	13.8	23
13	Selective and Washâ€Resistant Fluorescent Dihydrocodeinone Derivatives Allow Singleâ€Molecule Imaging of Î⅓â€Opioid Receptor Dimerization. Angewandte Chemie, 2020, 132, 6014-6020.	2.0	5
14	Structure-based development of a subtype-selective orexin 1 receptor antagonist. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18059-18067.	7.1	33
15	Synthesis, Radiosynthesis and Biological Evaluation of Buprenorphineâ€Derived Phenylazocarboxamides as Novel μâ€Opioid Receptor Ligands. ChemMedChem, 2020, 15, 1175-1186.	3.2	4
16	An allosteric modulator binds to a conformational hub in the \hat{l}^22 adrenergic receptor. Nature Chemical Biology, 2020, 16, 749-755.	8.0	51
17	Regiospecific Introduction of Halogens on the 2-Aminobiphenyl Subunit Leading to Highly Potent and Selective M3 Muscarinic Acetylcholine Receptor Antagonists and Weak Inverse Agonists. Journal of Medicinal Chemistry, 2020, 63, 4349-4369.	6.4	5
18	Red-Emitting Dibenzodiazepinone Derivatives as Fluorescent Dualsteric Probes for the Muscarinic Acetylcholine M2 Receptor. Journal of Medicinal Chemistry, 2020, 63, 4133-4154.	6.4	13

#	Article	IF	CITATIONS
19	Innenrücktitelbild: Selective and Washâ€Resistant Fluorescent Dihydrocodeinone Derivatives Allow Singleâ€Molecule Imaging of μâ€Opioid Receptor Dimerization (Angew. Chem. 15/2020). Angewandte Chemie, 2020, 132, 6348-6348.	2.0	1
20	Structure-based development of caged dopamine D2/D3 receptor antagonists. Scientific Reports, 2020, 10, 829.	3.3	14
21	Fluorescent ligands for dopamine D2/D3 receptors. Scientific Reports, 2020, 10, 21842.	3.3	14
22	Perquinoline A–C: neuartige bakterielle Tetrahydroisochinoline mit einer bemerkenswerten Biosynthese. Angewandte Chemie, 2019, 131, 13063-13068.	2.0	0
23	Perquinolines A–C: Unprecedented Bacterial Tetrahydroisoquinolines Involving an Intriguing Biosynthesis. Angewandte Chemie - International Edition, 2019, 58, 12930-12934.	13.8	10
24	Benzyl Phenylsemicarbazides: A Chemistry-Driven Approach Leading to G Protein-Biased Dopamine D ₄ Receptor Agonists with High Subtype Selectivity. Journal of Medicinal Chemistry, 2019, 62, 9658-9679.	6.4	9
25	Dual-Acting Cholinesterase–Human Cannabinoid Receptor 2 Ligands Show Pronounced Neuroprotection in Vitro and Overadditive and Disease-Modifying Neuroprotective Effects in Vivo. Journal of Medicinal Chemistry, 2019, 62, 9078-9102.	6.4	35
26	Structure-based exploration of an allosteric binding pocket in the NTS1 receptor using bitopic NT(8-13) derivatives and molecular dynamics simulations. Journal of Molecular Modeling, 2019, 25, 193.	1.8	4
27	Conjugation of Short Peptides to Dibenzodiazepinone-Type Muscarinic Acetylcholine Receptor Ligands Determines M ₂ R Selectivity. Journal of Medicinal Chemistry, 2019, 62, 5358-5369.	6.4	13
28	Conformational Complexity and Dynamics in a Muscarinic Receptor Revealed by NMR Spectroscopy. Molecular Cell, 2019, 75, 53-65.e7.	9.7	59
29	Hybridization of \hat{I}^2 -Adrenergic Agonists and Antagonists Confers G Protein Bias. Journal of Medicinal Chemistry, 2019, 62, 5111-5131.	6.4	12
30	Monitoring of the dopamine D2 receptor agonists hordenine and N-methyltyramine during the brewing process and in commercial beer samples. Food Chemistry, 2019, 276, 745-753.	8.2	18
31	Structure-guided development of selective M3 muscarinic acetylcholine receptor antagonists. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12046-12050.	7.1	64
32	Identification of the Beer Component Hordenine as Food-Derived Dopamine D2 Receptor Agonist by Virtual Screening a 3D Compound Database. Scientific Reports, 2017, 7, 44201.	3.3	27
33	Discovery of G Protein-Biased Dopaminergics with a Pyrazolo[1,5- <i>a</i> jpyridine Substructure. Journal of Medicinal Chemistry, 2017, 60, 2908-2929.	6.4	55
34	Potent haloperidol derivatives covalently binding to the dopamine D2 receptor. Bioorganic and Medicinal Chemistry, 2017, 25, 5084-5094.	3.0	10
35	Radiolabeled Dibenzodiazepinone-Type Antagonists Give Evidence of Dualsteric Binding at the M ₂ Muscarinic Acetylcholine Receptor. Journal of Medicinal Chemistry, 2017, 60, 3314-3334.	6.4	25
36	Heterodimerization of Dibenzodiazepinone-Type Muscarinic Acetylcholine Receptor Ligands Leads to Increased M ₂ R Affinity and Selectivity. ACS Omega, 2017, 2, 6741-6754.	3.5	19

#	Article	IF	Citations
37	\hat{l}^2 -Arrestin biased dopamine D2 receptor partial agonists: Synthesis and pharmacological evaluation. Bioorganic and Medicinal Chemistry, 2017, 25, 5613-5628.	3.0	20
38	Visualization of ligand-induced dopamine D2S and D2L receptor internalization by TIRF microscopy. Scientific Reports, 2017, 7, 10894.	3.3	13
39	[¹⁸ F]Fluorophenylazocarboxylates: Design and Synthesis of Potential Radioligands for Dopamine D3 and \hat{l} 4-Opioid Receptor. ACS Omega, 2017, 2, 8649-8659.	3.5	13
40	Structure-based discovery of opioid analgesics with reduced side effects. Nature, 2016, 537, 185-190.	27.8	744
41	Dibenzo[b , f][1,4] oxazepines and dibenzo[b , e] oxepines: Influence of the chlorine substitution pattern on the pharmacology at the H 1 R, H 4 R, 5-HT 2A R and other selected GPCRs. Pharmacological Research, 2016, 113, 610-625.	7.1	11
42	Structure-guided development of heterodimer-selective GPCR ligands. Nature Communications, 2016, 7, 12298.	12.8	81
43	Development of Covalent Ligand–Receptor Pairs to Study the Binding Properties of Nonpeptidic Neurotensin Receptor 1 Antagonists. ACS Chemical Biology, 2016, 11, 869-875.	3.4	17
44	Mimicking of Arginine by Functionalized <i>N</i> ^{\mathcal{i}\infty} -Carbamoylated Arginine As a New Broadly Applicable Approach to Labeled Bioactive Peptides: High Affinity Angiotensin, Neuropeptide Y, Neuropeptide FF, and Neurotensin Receptor Ligands As Examples. Journal of Medicinal Chemistry, 2016, 59, 1925-1945.	6.4	34
45	Fluoro-substituted phenylazocarboxamides: Dopaminergic behavior and N-arylating properties for irreversible binding. Bioorganic and Medicinal Chemistry, 2015, 23, 3938-3947.	3.0	4
46	Molecular Determinants of Biased Agonism at the Dopamine D ₂ Receptor. Journal of Medicinal Chemistry, 2015, 58, 2703-2717.	6.4	42
47	Covalent agonists for studying G protein-coupled receptor activation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10744-10748.	7.1	82
48	In Vivo Monitoring of the Antiangiogenic Effect of Neurotensin Receptor-Mediated Radiotherapy by Small-Animal Positron Emission Tomography: A Pilot Study. Pharmaceuticals, 2014, 7, 464-481.	3.8	18
49	Synthesis and evaluation of fluoro substituted pyridinylcarboxamides and their phenylazo analogues for potential dopamine D3 receptor PET imaging. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5399-5403.	2.2	10
50	Fast and Efficient ¹⁸ Fâ€Labeling by [¹⁸ F]Fluorophenylazocarboxylic Esters. Chemistry - A European Journal, 2014, 20, 370-375.	3.3	29
51	Conjugated Enynes as Nonaromatic Catechol Bioisosteres:  Synthesis, Binding Experiments, and Computational Studies of Novel Dopamine Receptor Agonists Recognizing Preferentially the D3 Subtype. Journal of Medicinal Chemistry, 2000, 43, 756-762.	6.4	170