Anne P Beigneux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6172263/publications.pdf Version: 2024-02-01

ANNE P REICHEUX

#	Article	IF	CITATIONS
1	Glycosylphosphatidylinositol-Anchored High-Density Lipoprotein-Binding Protein 1 Plays a Critical Role in the Lipolytic Processing of Chylomicrons. Cell Metabolism, 2007, 5, 279-291.	16.2	420
2	GPIHBP1 Is Responsible for the Entry of Lipoprotein Lipase into Capillaries. Cell Metabolism, 2010, 12, 42-52.	16.2	298
3	Chylomicronemia With a Mutant GPIHBP1 (Q115P) That Cannot Bind Lipoprotein Lipase. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 956-962.	2.4	151
4	The GPIHBP1–LPL Complex Is Responsible for the Margination of Triglyceride-Rich Lipoproteins in Capillaries. Cell Metabolism, 2014, 19, 849-860.	16.2	124
5	Agpat6—a novel lipid biosynthetic gene required for triacylglycerol production in mammary epithelium. Journal of Lipid Research, 2006, 47, 734-744.	4.2	112
6	Autoantibodies against GPIHBP1 as a Cause of Hypertriglyceridemia. New England Journal of Medicine, 2017, 376, 1647-1658.	27.0	112
7	Mutation of conserved cysteines in the Ly6 domain of GPIHBP1 in familial chylomicronemia. Journal of Lipid Research, 2010, 51, 1535-1545.	4.2	103
8	Chylomicronemia With Low Postheparin Lipoprotein Lipase Levels in the Setting of GPIHBP1 Defects. Circulation: Cardiovascular Genetics, 2010, 3, 169-178.	5.1	100
9	Angiopoietin-like 4 promotes intracellular degradation of lipoprotein lipase in adipocytes. Journal of Lipid Research, 2016, 57, 1670-1683.	4.2	86
10	GPIHBP1 and Lipoprotein Lipase, Partners in Plasma Triglyceride Metabolism. Cell Metabolism, 2019, 30, 51-65.	16.2	86
11	The acidic domain of the endothelial membrane protein CPIHBP1 stabilizes lipoprotein lipase activity by preventing unfolding of its catalytic domain. ELife, 2016, 5, e12095.	6.0	74
12	Highly Conserved Cysteines within the Ly6 Domain of GPIHBP1 Are Crucial for the Binding of Lipoprotein Lipase. Journal of Biological Chemistry, 2009, 284, 30240-30247.	3.4	69
13	GPIHBP1 and Plasma Triglyceride Metabolism. Trends in Endocrinology and Metabolism, 2016, 27, 455-469.	7.1	67
14	Structure of the lipoprotein lipase–GPIHBP1 complex that mediates plasma triglyceride hydrolysis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1723-1732.	7.1	67
15	Abnormal Patterns of Lipoprotein Lipase Release into the Plasma in GPIHBP1-deficient Mice. Journal of Biological Chemistry, 2008, 283, 34511-34518.	3.4	64
16	Assessing mechanisms of GPIHBP1 and lipoprotein lipase movement across endothelial cells. Journal of Lipid Research, 2012, 53, 2690-2697.	4.2	62
17	Lipoprotein lipase is active as a monomer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6319-6328.	7.1	60
18	NanoSIMS Analysis of Intravascular Lipolysis and Lipid Movement across Capillaries and into Cardiomyocytes. Cell Metabolism, 2018, 27, 1055-1066.e3.	16.2	54

ANNE P BEIGNEUX

#	Article	IF	CITATIONS
19	Mutations in lipoprotein lipase that block binding to the endothelial cell transporter GPIHBP1. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7980-7984.	7.1	53
20	GPIHBP1, a GPI-anchored protein required for the lipolytic processing of triglyceride-rich lipoproteins. Journal of Lipid Research, 2009, 50, S57-S62.	4.2	51
21	A disordered acidic domain in CPIHBP1 harboring a sulfated tyrosine regulates lipoprotein lipase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6020-E6029.	7.1	51
22	<i>GPIHBP1</i> Missense Mutations Often Cause Multimerization of GPIHBP1 and Thereby Prevent Lipoprotein Lipase Binding. Circulation Research, 2015, 116, 624-632.	4.5	50
23	Assessing the Role of the Glycosylphosphatidylinositol-anchored High Density Lipoprotein-binding Protein 1 (GPIHBP1) Three-finger Domain in Binding Lipoprotein Lipase. Journal of Biological Chemistry, 2011, 286, 19735-19743.	3.4	48
24	Multimerization of Glycosylphosphatidylinositol-anchored High Density Lipoprotein-binding Protein 1 (GPIHBP1) and Familial Chylomicronemia from a Serine-to-Cysteine Substitution in GPIHBP1 Ly6 Domain. Journal of Biological Chemistry, 2014, 289, 19491-19499.	3.4	45
25	Apolipoprotein C-III inhibits triglyceride hydrolysis by GPIHBP1-bound LPL. Journal of Lipid Research, 2017, 58, 1893-1902.	4.2	39
26	Unexpected Expression Pattern for Glycosylphosphatidylinositol-anchored HDL-binding Protein 1 (GPIHBP1) in Mouse Tissues Revealed by Positron Emission Tomography Scanning. Journal of Biological Chemistry, 2010, 285, 39239-39248.	3.4	36
27	GPIHBP1 and lipolysis: an update. Current Opinion in Lipidology, 2009, 20, 211-216.	2.7	35
28	Palmoplantar Keratoderma along with Neuromuscular and Metabolic Phenotypes in Slurp1 -Deficient Mice. Journal of Investigative Dermatology, 2014, 134, 1589-1598.	0.7	35
29	Mobility of "HSPG-bound―LPL explains how LPL is able to reach GPIHBP1 on capillaries. Journal of Lipid Research, 2017, 58, 216-225.	4.2	33
30	Glycosylation of Asn-76 in mouse GPIHBP1 is critical for its appearance on the cell surface and the binding of chylomicrons and lipoprotein lipase. Journal of Lipid Research, 2008, 49, 1312-1321.	4.2	28
31	GPIHBP1 autoantibodies in a patient with unexplained chylomicronemia. Journal of Clinical Lipidology, 2017, 11, 964-971.	1.5	25
32	Chylomicronemia from GPIHBP1 autoantibodies. Journal of Lipid Research, 2020, 61, 1365-1376.	4.2	21
33	Mutating a conserved cysteine in GPIHBP1 reduces amounts of GPIHBP1 in capillaries and abolishes LPL binding. Journal of Lipid Research, 2017, 58, 1453-1461.	4.2	16
34	Palmoplantar Keratoderma in Slurp2-Deficient Mice. Journal of Investigative Dermatology, 2016, 136, 436-443.	0.7	15
35	Monoclonal antibodies that bind to the Ly6 domain of GPIHBP1 abolish the binding of LPL. Journal of Lipid Research, 2017, 58, 208-215.	4.2	15
36	An enzyme-linked immunosorbent assay for measuring GPIHBP1 levels in human plasma orÂserum. Journal of Clinical Lipidology, 2018, 12, 203-210.e1.	1.5	15

Anne P Beigneux

#	Article	IF	CITATIONS
37	GPIHBP1 autoantibody syndrome during interferon β1a treatment. Journal of Clinical Lipidology, 2019, 13, 62-69.	1.5	15
38	GPIHBP1 and the processing of triglyceride-rich lipoproteins. Clinical Lipidology, 2010, 5, 575-582.	0.4	13
39	Intermittent chylomicronemia caused by intermittent GPIHBP1 autoantibodies. Journal of Clinical Lipidology, 2020, 14, 197-200.	1.5	13
40	Electrostatic sheathing of lipoprotein lipase is essential for its movement across capillary endothelial cells. Journal of Clinical Investigation, 2022, 132, .	8.2	13
41	Chylomicronemia From CPIHBP1 Autoantibodies Successfully Treated With Rituximab: A Case Report. Annals of Internal Medicine, 2020, 173, 764-765.	3.9	11
42	The structural basis for monoclonal antibody 5D2 binding to the tryptophan-rich loop of lipoprotein lipase. Journal of Lipid Research, 2020, 61, 1347-1359.	4.2	11
43	Equivalent binding of wild-type lipoprotein lipase (LPL) and S447X-LPL to GPIHBP1, the endothelial cell LPL transporter. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 963-969.	2.4	10
44	An LPL–specific monoclonal antibody, 88B8, that abolishes the binding of LPL to GPIHBP1. Journal of Lipid Research, 2016, 57, 1889-1898.	4.2	10
45	An ELISA for quantifying GPIHBP1 autoantibodies and making a diagnosis of the GPIHBP1 autoantibody syndrome. Clinica Chimica Acta, 2018, 487, 174-178.	1.1	10
46	GPIHBP1 expression in gliomas promotes utilization of lipoprotein-derived nutrients. ELife, 2019, 8, .	6.0	10
47	Lipoprotein lipase reaches the capillary lumen in chickens despite an apparent absence of GPIHBP1. JCI Insight, 2017, 2, .	5.0	9
48	An upstream enhancer regulates Gpihbp1 expression in a tissue-specific manner. Journal of Lipid Research, 2019, 60, 869-879.	4.2	7
49	A new monoclonal antibody, 4-1a, that binds to the amino terminus of human lipoprotein lipase. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 970-976.	2.4	4
50	Palmoplantar keratoderma in Slurp1/Slurp2 double-knockout mice. Journal of Dermatological Science, 2018, 89, 85-87.	1.9	2
51	A hypomorphic <i>Egfr</i> allele does not ameliorate the palmoplantar keratoderma caused by SLURP1 deficiency. Experimental Dermatology, 2017, 26, 1134-1136.	2.9	1