Nathan R Paisley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6171750/publications.pdf

Version: 2024-02-01

623734 713466 21 514 14 21 citations g-index h-index papers 21 21 21 528 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nearâ€Infraredâ€Emitting Boronâ€Difluorideâ€Curcuminoidâ€Based Polymers Exhibiting Thermally Activated Delayed Fluorescence as Biological Imaging Probes. Angewandte Chemie - International Edition, 2021, 60, 18630-18638.	13.8	56
2	1,8-Naphthalimide-Based Polymers Exhibiting Deep-Red Thermally Activated Delayed Fluorescence and Their Application in Ratiometric Temperature Sensing. ACS Applied Materials & Los (2020, 12, 20000-2001).	8.0	55
3	Color-Tunable Thermally Activated Delayed Fluorescence in Oxadiazole-Based Acrylic Copolymers: Photophysical Properties and Applications in Ratiometric Oxygen Sensing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 6525-6535.	8.0	52
4	Metalâ€Free Dehydrogenation of Amineâ€Boranes by Tunable Nâ€Heterocyclic Iminoboranes. Chemistry - A European Journal, 2016, 22, 2134-2145.	3.3	49
5	Stimuli-Responsive Thermally Activated Delayed Fluorescence in Polymer Nanoparticles and Thin Films: Applications in Chemical Sensing and Imaging. Frontiers in Chemistry, 2020, 8, 229.	3.6	41
6	Red-Emissive Cell-Penetrating Polymer Dots Exhibiting Thermally Activated Delayed Fluorescence for Cellular Imaging. Journal of the American Chemical Society, 2021, 143, 13342-13349.	13.7	41
7	Cu(0)-RDRP of acrylates based on p-type organic semiconductors. Polymer Chemistry, 2018, 9, 1397-1403.	3.9	29
8	Blue to Yellow Thermally Activated Delayed Fluorescence with Quantum Yields near Unity in Acrylic Polymers Based on Dâ^l∈–A Pyrimidines. Macromolecules, 2020, 53, 2039-2050.	4.8	26
9	Structurally versatile phosphine and amine donors constructed from N-heterocyclic olefin units. Dalton Transactions, 2016, 45, 9860-9870.	3.3	25
10	Polymerization of acrylates based on n-type organic semiconductors using Cu(0)-RDRP. Polymer Chemistry, 2018, 9, 3359-3367.	3.9	23
11	Exploring the Scope of Through-Space Charge-Transfer Thermally Activated Delayed Fluorescence in Acrylic Donor–Acceptor Copolymers. Macromolecules, 2021, 54, 2466-2476.	4.8	18
12	Design of High-Performance Thermally Activated Delayed Fluorescence Emitters Containing <i>s</i> -Triazine and <i>s</i> -Heptazine with Molecular Orbital Visualization by STM. Chemistry of Materials, 2022, 34, 2624-2635.	6.7	17
13	Tunable benzothiadiazole-based donor–acceptor materials for two-photon excited fluorescence. Materials Chemistry Frontiers, 2020, 4, 555-566.	5.9	16
14	Thermally Assisted Fluorescent Polymers: Polycyclic Aromatic Materials for High Color Purity and White-Light Emission. ACS Applied Materials & Samp; Interfaces, 2020, 12, 38602-38613.	8.0	16
15	Fluorescent Heterotelechelic Single-Chain Polymer Nanoparticles: Synthesis, Spectroscopy, and Cellular Imaging. ACS Applied Nano Materials, 2019, 2, 898-909.	5.0	15
16	Synthesis of phosphorescent iridiumâ€containing acrylic monomers and their roomâ€temperature polymerization by Cu(0)â€RDRP. Journal of Polymer Science Part A, 2018, 56, 2539-2546.	2.3	9
17	Nearâ€Infraredâ€Emitting Boronâ€Difluorideâ€Curcuminoidâ€Based Polymers Exhibiting Thermally Activated Delayed Fluorescence as Biological Imaging Probes. Angewandte Chemie, 2021, 133, 18778-18786.	2.0	8
18	Estimating Phosphorescent Emission Energies in Ir ^{III} Complexes Using Largeâ€6cale Quantum Computing Simulations**. Angewandte Chemie - International Edition, 2022, 61, e202116175.	13.8	7

#	Article	IF	CITATIONS
19	Synthesis of polymeric organic semiconductors using semifluorinated polymer precursors. Journal of Polymer Science Part A, 2018, 56, 2183-2191.	2.3	5
20	An efficient room-temperature synthesis of highly phosphorescent styrenic Pt(ii) complexes and their polymerization by ATRP. Polymer Chemistry, 2018, 9, 5418-5425.	3.9	3
21	Estimating Phosphorescent Emission Energies in Ir ^{III} Complexes Using Largeâ€5cale Quantum Computing Simulations**. Angewandte Chemie, 2022, 134, .	2.0	3