

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6170917/publications.pdf Version: 2024-02-01

DONC

#	Article	IF	CITATIONS
1	Quantifying the Influence of a Burn Event on Ammonia Concentrations Using a Machine-Learning Technique. Atmosphere, 2022, 13, 170.	2.3	1
2	Environmental effects of China's coal ban policy: Results from in situ observations and model analysis in a typical rural area of the Beijing-Tianjin-Hebei region, China. Atmospheric Research, 2022, 268, 106015.	4.1	10
3	Significant contribution of secondary particulate matter to recurrent air pollution: Evidence from in situ observation in the most polluted city of Fen-Wei Plain of China. Journal of Environmental Sciences, 2022, 114, 422-433.	6.1	5
4	Effect of Different Combustion Processes on Atmospheric Nitrous Acid Formation Mechanisms: A Winter Comparative Observation in Urban, Suburban and Rural Areas of the North China Plain. Environmental Science & Technology, 2022, 56, 4828-4837.	10.0	6
5	Decadal changes in ozone in the lower boundary layer over Beijing, China. Atmospheric Environment, 2022, 275, 119018.	4.1	11
6	An integrated air quality modeling system coupling regional-urban and street models in Beijing. Urban Climate, 2022, 43, 101143.	5.7	4
7	Rapid transition of aerosol optical properties and water-soluble organic aerosols in cold season in Fenwei Plain. Science of the Total Environment, 2022, 829, 154661.	8.0	8
8	Significant reduction in atmospheric organic and elemental carbon in PM2.5 in 2+26 cities in northern China. Environmental Research, 2022, 211, 113055.	7.5	14
9	Analysis of coordinated relationship between PM _{2.5} and ozone and its affecting factors on different timescales. Chinese Science Bulletin, 2022, 67, 2018-2028.	0.7	3
10	Biological and Nonbiological Sources of Fluorescent Aerosol Particles in the Urban Atmosphere. Environmental Science & Technology, 2022, 56, 7588-7597.	10.0	6
11	The Levels and Sources of Nitrous Acid (HONO) in Winter of Beijing and Sanmenxia. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	9
12	Estimated contribution of vehicular emissions to carbonaceous aerosols in urban Beijing, China. Atmospheric Research, 2021, 248, 105153.	4.1	10
13	In situ continuous hourly observations of wintertime nitrate, sulfate and ammonium in a megacity in the North China plain from 2014 to 2019: Temporal variation, chemical formation and regional transport. Chemosphere, 2021, 262, 127745.	8.2	17
14	A study on the characteristics of ice nucleating particles concentration and aerosols and their relationship in spring in Beijing. Atmospheric Research, 2021, 247, 105196.	4.1	18
15	Chemical composition, water content and size distribution of aerosols during different development stages of regional haze episodes over the North China Plain. Atmospheric Environment, 2021, 245, 118020.	4.1	19
16	Significant changes in autumn and winter aerosol composition and sources in Beijing from 2012 to 2018: Effects of clean air actions. Environmental Pollution, 2021, 268, 115855.	7.5	43
17	Development of WRF/CUACE v1.0 model and its preliminary application in simulating air quality in China. Geoscientific Model Development, 2021, 14, 703-718.	3.6	26
18	Exploring the inorganic and organic nitrate aerosol formation regimes at a suburban site on the North China Plain. Science of the Total Environment, 2021, 768, 144538.	8.0	26

#	Article	IF	CITATIONS
19	A multiple linear regression model with multiplicative log-normal error term for atmospheric concentration data. Science of the Total Environment, 2021, 767, 144282.	8.0	17
20	Parameterized atmospheric oxidation capacity and speciated OH reactivity over a suburban site in the North China Plain: A comparative study between summer and winter. Science of the Total Environment, 2021, 773, 145264.	8.0	17
21	Characteristics, sources, and health risks of PM2.5-bound trace elements in representative areas of Northern Zhejiang Province, China. Chemosphere, 2021, 272, 129632.	8.2	32
22	Elucidating the quantitative characterization of atmospheric oxidation capacity in Beijing, China. Science of the Total Environment, 2021, 771, 145306.	8.0	27
23	An investigation into the impact of variations of ambient air pollution and meteorological factors on lung cancer mortality in Yangtze River Delta. Science of the Total Environment, 2021, 779, 146427.	8.0	28
24	A new parameterization of uptake coefficients for heterogeneous reactions on multi-component atmospheric aerosols. Science of the Total Environment, 2021, 781, 146372.	8.0	4
25	Effects of different stagnant meteorological conditions on aerosol chemistry and regional transport changes in Beijing, China. Atmospheric Environment, 2021, 258, 118483.	4.1	4
26	Low particulate nitrate in the residual layer in autumn over the North China Plain. Science of the Total Environment, 2021, 782, 146845.	8.0	17
27	Characteristics and source attribution of PM2.5 during 2016 G20 Summit in Hangzhou: Efficacy of radical measures to reduce source emissions. Journal of Environmental Sciences, 2021, 106, 47-65.	6.1	16
28	Nonlinear response of SIA to emission changes and chemical processes over eastern and central China during a heavy haze month. Science of the Total Environment, 2021, 788, 147747.	8.0	8
29	Exploring the variation of black and brown carbon during COVID-19 lockdown in megacity Wuhan and its surrounding cities, China. Science of the Total Environment, 2021, 791, 148226.	8.0	9
30	Characteristics, sources and health risk assessment of PM2.5 in China's coal and coking heartland: Insights gained from the regional observations during the heating season. Atmospheric Pollution Research, 2021, 12, 101237.	3.8	10
31	Rapid formation of intense haze episodes via aerosol–boundary layer feedback in Beijing. Atmospheric Chemistry and Physics, 2020, 20, 45-53.	4.9	36
32	Seasonal variation and sources of derivatized phenols in atmospheric fine particulate matter in North China Plain. Journal of Environmental Sciences, 2020, 89, 136-144.	6.1	18
33	Effectively controlling hazardous airborne elements: Insights from continuous hourly observations during the seasons with the most unfavorable meteorological conditions after the implementation of the APPCAP. Journal of Hazardous Materials, 2020, 387, 121710.	12.4	16
34	Highly time-resolved chemical characterization and implications of regional transport for submicron aerosols in the North China Plain. Science of the Total Environment, 2020, 705, 135803.	8.0	18
35	In situ continuous observation of hourly elements in PM2.5 in urban beijing, China: Occurrence levels, temporal variation, potential source regions and health risks. Atmospheric Environment, 2020, 222, 117164.	4.1	30
36	Efficient Vertical Transport of Black Carbon in the Planetary Boundary Layer. Geophysical Research Letters, 2020, 47, e2020GL088858.	4.0	19

#	Article	IF	CITATIONS
37	Atmospheric reactivity and oxidation capacity during summer at a suburban site between Beijing and Tianjin. Atmospheric Chemistry and Physics, 2020, 20, 8181-8200.	4.9	24
38	Size-resolved mixing state and optical properties of black carbon at an urban site in Beijing. Science of the Total Environment, 2020, 749, 141523.	8.0	15
39	Different HONO Sources for Three Layers at the Urban Area of Beijing. Environmental Science & Technology, 2020, 54, 12870-12880.	10.0	52
40	Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze. Nature Communications, 2020, 11, 2844.	12.8	161
41	Tracking ammonia morning peak, sources and transport with 1ÂHz measurements at a rural site in North China Plain. Atmospheric Environment, 2020, 235, 117630.	4.1	23
42	China's emission control strategies have suppressed unfavorable influences of climate on wintertime PM _{2.5} concentrations in Beijing since 2002. Atmospheric Chemistry and Physics, 2020, 20, 1497-1505.	4.9	47
43	Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017. National Science Review, 2020, 7, 1331-1339.	9.5	284
44	Levels and sources of hourly PM2.5-related elements during the control period of the COVID-19 pandemic at a rural site between Beijing and Tianjin. Science of the Total Environment, 2020, 744, 140840.	8.0	54
45	Contribution of Particulate Nitrate Photolysis to Heterogeneous Sulfate Formation for Winter Haze in China. Environmental Science and Technology Letters, 2020, 7, 632-638.	8.7	43
46	A chemical cocktail during the COVID-19 outbreak in Beijing, China: Insights from six-year aerosol particle composition measurements during the Chinese New Year holiday. Science of the Total Environment, 2020, 742, 140739.	8.0	138
47	Significant decreases in the volatile organic compound concentration, atmospheric oxidation capacity and photochemical reactivity during the National Day holiday over a suburban site in the North China Plain. Environmental Pollution, 2020, 263, 114657.	7.5	29
48	Fluorescence characteristics of particulate water-soluble organic compounds emitted from coal-fired boilers. Atmospheric Environment, 2020, 223, 117297.	4.1	21
49	Meteorological mechanism for a large-scale persistent severe ozone pollution event over eastern China in 2017. Journal of Environmental Sciences, 2020, 92, 187-199.	6.1	63
50	Effect of the "coal to gas―project on atmospheric NOX during the heating period at a suburban site between Beijing and Tianjin. Atmospheric Research, 2020, 241, 104977.	4.1	46
51	Real-time physiochemistry of urban aerosols during a regional haze episode by a single-particle aerosol mass spectrometer: Mixing state, size distribution and source apportionment. Atmospheric Pollution Research, 2020, 11, 1329-1338.	3.8	5
52	Study on sedimentation stability of magnetorheological fluids based on different lubricant formulations. Materials Research Express, 2020, 7, 085702.	1.6	3
53	Bias in ammonia emission inventory and implications on emission control of nitrogen oxides over North China Plain. Atmospheric Environment, 2019, 214, 116869.	4.1	20
54	Impact of air pollution control measures and regional transport on carbonaceous aerosols in fine particulate matter in urban Beijing, China: insights gained from long-term measurement. Atmospheric Chemistry and Physics, 2019, 19, 8569-8590.	4.9	81

#	Article	IF	CITATIONS
55	Role of Ammonia on the Feedback Between AWC and Inorganic Aerosol Formation During Heavy Pollution in theÂNorthÂChinaÂPlain. Earth and Space Science, 2019, 6, 1675-1693.	2.6	44
56	Characteristics and Sources of Hourly Trace Elements in Airborne Fine Particles in Urban Beijing, China. Journal of Geophysical Research D: Atmospheres, 2019, 124, 11595-11613.	3.3	48
57	Trends in particulate matter and its chemical compositions in China from 2013–2017. Science China Earth Sciences, 2019, 62, 1857-1871.	5.2	111
58	Ambient volatile organic compounds in a suburban site between Beijing and Tianjin: Concentration levels, source apportionment and health risk assessment. Science of the Total Environment, 2019, 695, 133889.	8.0	94
59	A 14â€year statisticsâ€based semiâ€idealized modeling study on the formation of a type of heavy rain–producing southwest vortex. Atmospheric Science Letters, 2019, 20, e894.	1.9	9
60	Characteristics of fine particle explosive growth events in Beijing, China: Seasonal variation, chemical evolution pattern and formation mechanism. Science of the Total Environment, 2019, 687, 1073-1086.	8.0	61
61	Introduction to the special issue "In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)†Atmospheric Chemistry and Physics, 2019, 19, 7519-7546.	4.9	95
62	Biomass burning and fungal spores as sources of fine aerosols in Yangtze River Delta, China – Using multiple organic tracers to understand variability, correlations and origins. Environmental Pollution, 2019, 251, 155-165.	7.5	24
63	Case study of the effects of aerosol chemical composition and hygroscopicity on the scattering coefficient in summer, Xianghe, southeast of Beijing, China. Atmospheric Research, 2019, 225, 81-87.	4.1	10
64	Comparison of surface ozone simulation among selected regional models in MICS-AsiaÂIII – effects of chemistry and vertical transport for the causes of difference. Atmospheric Chemistry and Physics, 2019, 19, 603-615.	4.9	22
65	The carbonaceous aerosol levels still remain a challenge in the Beijing-Tianjin-Hebei region of China: Insights from continuous high temporal resolution measurements in multiple cities. Environment International, 2019, 126, 171-183.	10.0	73
66	Quantifying the impact of synoptic circulation patterns on ozone variability in northern China from April to October 2013–2017. Atmospheric Chemistry and Physics, 2019, 19, 14477-14492.	4.9	61
67	Influence of anthropogenic emission inventories on simulations of air quality in China during winter and summer 2010. Atmospheric Environment, 2019, 198, 236-256.	4.1	24
68	Investigating the PM2.5 mass concentration growth processes during 2013–2016 in Beijing and Shanghai. Chemosphere, 2019, 221, 452-463.	8.2	50
69	A closure study of aerosol optical properties as a function of RH using a κ-AMS-BC-Mie model in Beijing, China. Atmospheric Environment, 2019, 197, 1-13.	4.1	11
70	Characteristics of Air Pollutants and Greenhouse Gases at a Regional Background Station in Southwestern China. Aerosol and Air Quality Research, 2019, 19, 1007-1023.	2.1	10
71	Characterization and source identification of fine particulate matter in urban Beijing during the 2015 Spring Festival. Science of the Total Environment, 2018, 628-629, 430-440.	8.0	62
72	Two-year continuous measurements of carbonaceous aerosols in urban Beijing, China: Temporal variations, characteristics and source analyses. Chemosphere, 2018, 200, 191-200.	8.2	48

#	Article	IF	CITATIONS
73	Vertically resolved characteristics of air pollution during two severe winter haze episodes in urban Beijing, China. Atmospheric Chemistry and Physics, 2018, 18, 2495-2509.	4.9	69
74	Ice-nucleating particle concentrations unaffected by urban air pollution in Beijing, China. Atmospheric Chemistry and Physics, 2018, 18, 3523-3539.	4.9	78
75	Characterization of submicron particles during autumn in Beijing, China. Journal of Environmental Sciences, 2018, 63, 16-27.	6.1	26
76	Aerosol chemical compositions in the North China Plain and the impact on the visibility in Beijing and Tianjin. Atmospheric Research, 2018, 201, 235-246.	4.1	85
77	Characteristics of fine particulate matter and its sources in an industrialized coastal city, Ningbo, Yangtze River Delta, China. Atmospheric Research, 2018, 203, 105-117.	4.1	77
78	Simultaneous measurement of multiple organic tracers in fine aerosols from biomass burning and fungal spores by HPLC-MS/MS. RSC Advances, 2018, 8, 34136-34150.	3.6	6
79	Continuous observation of black carbon aerosol during winter in urban Beijing, China. Atmospheric and Oceanic Science Letters, 2018, 11, 491-498.	1.3	2
80	Fine Particle Constituents and Mortality: A Time-Series Study in Beijing, China. Environmental Science & Technology, 2018, 52, 11378-11386.	10.0	41
81	Attribution of aerosol direct radiative forcing in China and India to emitting sectors. Atmospheric Environment, 2018, 190, 35-42.	4.1	29
82	Air pollution over the North China Plain and its implication of regional transport: A new sight from the observed evidences. Environmental Pollution, 2018, 234, 29-38.	7.5	49
83	Characteristics of Organic Carbon and Elemental Carbon in Atmospheric Aerosols in the Urban Area in Beibei, a Suburb of Chongqing. Aerosol and Air Quality Research, 2018, 18, 2764-2774.	2.1	12
84	Pollution Characteristics of Water-soluble Ions in Aerosols in the Urban Area in Beibei of Chongqing. Aerosol and Air Quality Research, 2018, 18, 1531-1544.	2.1	3
85	Characterization of black carbon in an urban-rural fringe area of Beijing. Environmental Pollution, 2017, 223, 524-534.	7.5	54
86	Two ultraviolet radiation datasets that cover China. Advances in Atmospheric Sciences, 2017, 34, 805-815.	4.3	20
87	Temporal and spatial variation in major ion chemistry and source identification of secondary inorganic aerosols in Northern Zhejiang Province, China. Chemosphere, 2017, 179, 316-330.	8.2	71
88	The impact of relative humidity on the size distribution and chemical processes of major water-soluble inorganic ions in the megacity of Chongqing, China. Atmospheric Research, 2017, 192, 19-29.	4.1	15
89	Distinguishing the roles of meteorology, emission control measures, regional transport, and co-benefits of reduced aerosol feedbacks in "APEC Blueâ€, Atmospheric Environment, 2017, 167, 476-486.	4.1	40
90	Quantification of the impact of aerosol on broadband solar radiation in North China. Scientific Reports, 2017, 7, 44851.	3.3	45

#	Article	IF	CITATIONS
91	Below-cloud wet scavenging of soluble inorganic ions by rain in Beijing during the summer of 2014. Environmental Pollution, 2017, 230, 963-973.	7.5	44
92	Chemical characterization and source identification of PM _{2.5} at multiple sites in the Beijing–Tianjin–Hebei region, China. Atmospheric Chemistry and Physics, 2017, 17, 12941-12962.	4.9	178
93	Evaluating the Effects of Springtime Dust Storms over Beijing and the Associated Characteristics of Sub-Micron Aerosol. Aerosol and Air Quality Research, 2017, 17, 680-692.	2.1	17
94	Rapid formation and evolution of an extreme haze episode in Northern China during winter 2015. Scientific Reports, 2016, 6, 27151.	3.3	162
95	Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China. Atmospheric Research, 2016, 176-177, 64-74.	4.1	177
96	Characterization of submicron particles during biomass burning and coal combustion periods in Beijing, China. Science of the Total Environment, 2016, 562, 812-821.	8.0	71
97	Improving simulations of sulfate aerosols during winter haze over Northern China: the impacts of heterogeneous oxidation by NO2. Frontiers of Environmental Science and Engineering, 2016, 10, 1.	6.0	47
98	Investigating the evolution of summertime secondary atmospheric pollutants in urban Beijing. Science of the Total Environment, 2016, 572, 289-300.	8.0	28
99	The observationâ€based relationships between PM _{2.5} and AOD over China. Journal of Geophysical Research D: Atmospheres, 2016, 121, 10,701.	3.3	47
100	Tropospheric ozone variability during the East Asian summer monsoon as observed by satellite (IASI), aircraft (MOZAIC) and ground stations. Atmospheric Chemistry and Physics, 2016, 16, 10489-10500.	4.9	42
101	Redefining the importance of nitrate during haze pollution to help optimize an emission control strategy. Atmospheric Environment, 2016, 141, 197-202.	4.1	90
102	Characteristics of atmospheric organic and elemental carbon aerosols in urban Beijing, China. Atmospheric Environment, 2016, 125, 293-306.	4.1	104
103	Characteristics of air quality in Tianjin during the Spring Festival period of 2015. Atmospheric and Oceanic Science Letters, 2016, 9, 15-21.	1.3	16
104	Source appointment of fine particle number and volume concentration during severe haze pollution in Beijing in January 2013. Environmental Science and Pollution Research, 2016, 23, 6845-6860.	5.3	50
105	Seasonal variation and secondary formation of size-segregated aerosol water-soluble inorganic ions during pollution episodes in Beijing. Atmospheric Research, 2016, 168, 70-79.	4.1	139
106	Aerosol composition, oxidation properties, and sources in Beijing: results from the 2014 Asia-Pacific Economic Cooperation summit study. Atmospheric Chemistry and Physics, 2015, 15, 13681-13698.	4.9	117
107	Aerosol physicochemical properties and implications for visibility during an intense haze episode during winter in Beijing. Atmospheric Chemistry and Physics, 2015, 15, 3205-3215.	4.9	131
108	Long-range transport and regional sources of PM2.5 in Beijing based on long-term observations from 2005 to 2010. Atmospheric Research, 2015, 157, 37-48.	4.1	168

#	Article	IF	CITATIONS
109	The Campaign on Atmospheric Aerosol Research Network of China: CARE-China. Bulletin of the American Meteorological Society, 2015, 96, 1137-1155.	3.3	115
110	Characterization of organic aerosols in Beijing using an aerodyne high-resolution aerosol mass spectrometer. Advances in Atmospheric Sciences, 2015, 32, 877-888.	4.3	29
111	Characterizing ozone pollution in a petrochemical industrial area in Beijing, China: a case study using a chemical reaction model. Environmental Monitoring and Assessment, 2015, 187, 377.	2.7	27
112	Diurnal and seasonal variation of the PM2.5 apparent particle density in Beijing, China. Atmospheric Environment, 2015, 120, 328-338.	4.1	37
113	Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013. Atmospheric Chemistry and Physics, 2014, 14, 2887-2903.	4.9	280
114	The Influence of Climate Factors, Meteorological Conditions, and Boundary-Layer Structure on Severe Haze Pollution in the Beijing-Tianjin-Hebei Region during January 2013. Advances in Meteorology, 2014, 2014, 1-14.	1.6	91
115	The heaviest particulate air-pollution episodes occurred in northern China in January, 2013: Insights gained from observation. Atmospheric Environment, 2014, 92, 546-556.	4.1	212
116	Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Science China Earth Sciences, 2014, 57, 14-25.	5.2	626
117	Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days. Scientific Reports, 2014, 4, 4172.	3.3	426
118	Ozone weekend effects in the Beijing–Tianjin–Hebei metropolitan area, China. Atmospheric Chemistry and Physics, 2014, 14, 2419-2429.	4.9	70
119	Characterization of the size-segregated water-soluble inorganic ions in the Jing-Jin-Ji urban agglomeration: Spatial/temporal variability, size distribution and sources. Atmospheric Environment, 2013, 77, 250-259.	4.1	106
120	Characteristics of ozone and its precursors in Northern China: A comparative study of three sites. Atmospheric Research, 2013, 132-133, 450-459.	4.1	44
121	Inversion of CO emissions over Beijing and its surrounding areas with ensemble Kalman filter. Atmospheric Environment, 2013, 81, 676-686.	4.1	49
122	Nitrogen dioxide measurement by cavity attenuated phase shift spectroscopy (CAPS) and implications in ozone production efficiency and nitrate formation in Beijing, China. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9499-9509.	3.3	35
123	Spatial-temporal variations in surface ozone in Northern China as observed during 2009–2010 and possible implications for future air quality control strategies. Atmospheric Chemistry and Physics, 2012, 12, 2757-2776.	4.9	178
124	Reductions of PM2.5 in Beijing-Tianjin-Hebei urban agglomerations during the 2008 Olympic Games. Advances in Atmospheric Sciences, 2012, 29, 1330-1342.	4.3	48
125	Analysis of heavy pollution episodes in selected cities of northern China. Atmospheric Environment, 2012, 50, 338-348.	4.1	152
126	Characterization of volatile organic compounds in the urban area of Beijing from 2000 to 2007. Journal of Environmental Sciences, 2012, 24, 95-101.	6.1	68

#	Article	IF	CITATIONS
127	Variability and reduction of atmospheric pollutants in Beijing and its surrounding area during the Beijing 2008 Olympic Games. Science Bulletin, 2010, 55, 1937-1944.	1.7	70
128	Levels and Vertical Distributions of PCBs, PBDEs, and OCPs in the Atmospheric Boundary Layer: Observation from the Beijing 325-m Meteorological Tower. Environmental Science & Technology, 2009, 43, 1030-1035.	10.0	60
129	The nonlinear response of fine particulate matter pollution to ammonia emission reductions in North China. Environmental Research Letters, 0, , .	5.2	9