List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6170759/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temperature, humidity and outdoor air quality indicators influence COVID-19 spread rate and mortality in major cities of Saudi Arabia. Environmental Research, 2022, 204, 112071.	7.5	23
2	Avian Orthoavulavirus Type-1 as Vaccine Vector against Respiratory Viral Pathogens in Animal and Human. Vaccines, 2022, 10, 259.	4.4	1
3	Structural Bases of Zoonotic and Zooanthroponotic Transmission of SARS-CoV-2. Viruses, 2022, 14, 418.	3.3	8
4	Mapping molecular gene signatures mediated by SARS-COV-2 and large-scale and genome-wide transcriptomics comparative analysis among respiratory viruses of medical importance. Molecular and Cellular Probes, 2022, 64, 101820.	2.1	5
5	Development of CRISPR/Cas9-based Novel Vaccines against Poultry Viruses. Access Microbiology, 2022, 4, .	0.5	Ο
6	Structural and functional insights into non-structural proteins of coronaviruses. Microbial Pathogenesis, 2021, 150, 104641.	2.9	69
7	Comparative infectivity and transmissibility studies of wild-bird and chicken-origin highly pathogenic avian influenza viruses H5N8 in chickens. Comparative Immunology, Microbiology and Infectious Diseases, 2021, 74, 101594.	1.6	7
8	VP2 virusâ€like particles elicit protective immunity against duckling short beak and dwarfism syndrome in ducks. Transboundary and Emerging Diseases, 2021, , .	3.0	1
9	Evolutionary conservation of the DRACH signatures of potential N6-methyladenosine (m6A) sites among influenza A viruses. Scientific Reports, 2021, 11, 4548.	3.3	16
10	Oncolytic effect of Newcastle disease virus is attributed to interferon regulation in canine mammary cancer cell lines. Veterinary and Comparative Oncology, 2021, 19, 593-601.	1.8	4
11	Immunogenicity and efficacy of a bivalent vaccine against infectious bronchitis virus. Comparative Immunology, Microbiology and Infectious Diseases, 2021, 77, 101670.	1.6	1
12	Transgenic Chicks Expressing Interferon-Inducible Transmembrane Protein 1 (IFITM1) Restrict Highly Pathogenic H5N1 Influenza Viruses. International Journal of Molecular Sciences, 2021, 22, 8456.	4.1	8
13	An Artificial Intelligence-Assisted Portable Low-Cost Device for the Rapid Detection of SARS-CoV-2. Electronics (Switzerland), 2021, 10, 2065.	3.1	6
14	Immunogenicity and protective efficacy of an intranasal live-attenuated vaccine against SARS-CoV-2. IScience, 2021, 24, 102941.	4.1	39
15	Structural and Evolutionary Insights Into the Binding of Host Receptors by the Rabies Virus Glycoprotein. Frontiers in Cellular and Infection Microbiology, 2021, 11, 736114.	3.9	2
16	Potential Use of CRISPR/Cas13 Machinery in Understanding Virus–Host Interaction. Frontiers in Microbiology, 2021, 12, 743580.	3.5	9
17	The Molecular Virology of Coronaviruses with Special Reference to SARS-CoV-2. Advances in Experimental Medicine and Biology, 2021, 1352, 15-31.	1.6	3
18	Duckling short beak and dwarfism syndrome virus infection activates host innate immune response involving both DNA and RNA sensors. Microbial Pathogenesis, 2020, 138, 103816.	2.9	1

#	Article	IF	CITATIONS
19	Structural and Virus Regulatory Insights Into Avian N6-Methyladenosine (m6A) Machinery. Frontiers in Cell and Developmental Biology, 2020, 8, 543.	3.7	9
20	Application of CRISPR/Cas9 in Understanding Avian Viruses and Developing Poultry Vaccines. Frontiers in Cellular and Infection Microbiology, 2020, 10, 581504.	3.9	13
21	Artificial Intelligence-Assisted Loop Mediated Isothermal Amplification (AI-LAMP) for Rapid Detection of SARS-CoV-2. Viruses, 2020, 12, 972.	3.3	40
22	Potential reverse spillover of infectious bursal disease virus at the interface of commercial poultry and wild birds. Virus Genes, 2020, 56, 705-711.	1.6	3
23	A Scalable Topical Vectored Vaccine Candidate against SARS-CoV-2. Vaccines, 2020, 8, 472.	4.4	20
24	Fundamental Characteristics of Bat Interferon Systems. Frontiers in Cellular and Infection Microbiology, 2020, 10, 527921.	3.9	26
25	Evolutionary Analysis of Infectious Bronchitis Virus Reveals Marked Genetic Diversity and Recombination Events. Genes, 2020, 11, 605.	2.4	20
26	MERTK is a host factor that promotes classical swine fever virus entry and antagonizes innate immune response in PK-15 cells. Emerging Microbes and Infections, 2020, 9, 571-581.	6.5	21
27	A comprehensive global perspective on phylogenomics and evolutionary dynamics of Small ruminant morbillivirus. Scientific Reports, 2020, 10, 17.	3.3	14
28	Structural Insights Into m6A-Erasers: A Step Toward Understanding Molecule Specificity and Potential Antiviral Targeting. Frontiers in Cell and Developmental Biology, 2020, 8, 587108.	3.7	9
29	Emergence and genetic analysis of variant pathogenic 4/91 (serotype 793/B) infectious bronchitis virus in Egypt during 2019. Virus Genes, 2019, 55, 720-725.	1.6	14
30	A comparative phylogenomic analysis of peste des petits ruminants virus isolated from wild and unusual hosts. Molecular Biology Reports, 2019, 46, 5587-5593.	2.3	13
31	Human Hemoglobin Subunit Beta Functions as a Pleiotropic Regulator of RIG-I/MDA5-Mediated Antiviral Innate Immune Responses. Journal of Virology, 2019, 93, .	3.4	24
32	A comparative genomic and evolutionary analysis of circulating strains of Avian avulavirus 1 in Pakistan. Molecular Genetics and Genomics, 2019, 294, 1289-1309.	2.1	3
33	Updated unified phylogenetic classification system and revised nomenclature for Newcastle disease virus. Infection, Genetics and Evolution, 2019, 74, 103917.	2.3	227
34	Pathogenic Characterization and Full Length Genome Sequence of a Reassortant Infectious Bursal Disease Virus Newly Isolated in Pakistan. Virologica Sinica, 2019, 34, 102-105.	3.0	16
35	Dynamic Expression of Interferon Lambda Regulated Genes in Primary Fibroblasts and Immune Organs of the Chicken. Genes, 2019, 10, 145.	2.4	10
36	Evaluation of transmission potential and pathobiological characteristics of mallard originated Avian orthoavulavirus 1 (sub-genotype VII.2) in commercial broilers. Microbial Pathogenesis, 2019, 137, 103785.	2.9	1

#	Article	IF	CITATIONS
37	Genome-Wide Classification of Type I, Type II and Type III Interferon-Stimulated Genes in Chicken Fibroblasts. Vaccines, 2019, 7, 160.	4.4	4
38	Simultaneous Deletion of Virulence Factors and Insertion of Antigens into the Infectious Laryngotracheitis Virus Using NHEJ-CRISPR/Cas9 and Cre–Lox System for Construction of a Stable Vaccine Vector. Vaccines, 2019, 7, 207.	4.4	22
39	Genetic Diversity and Phylodynamics of Avian Coronaviruses in Egyptian Wild Birds. Viruses, 2019, 11, 57.	3.3	14
40	Chicken Interferon-induced Protein with Tetratricopeptide Repeats 5 Antagonizes Replication of RNA Viruses. Scientific Reports, 2018, 8, 6794.	3.3	43
41	Genomic and biological characterization of Newcastle disease viruses isolated from migratory mallards (Anas platyrhynchos). Archives of Virology, 2018, 163, 2179-2188.	2.1	11
42	Oxidative Stress in Poultry: Lessons from the Viral Infections. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-14.	4.0	33
43	Pathobiology of Avian avulavirus 1: special focus on waterfowl. Veterinary Research, 2018, 49, 94.	3.0	19
44	Chickens Expressing IFIT5 Ameliorate Clinical Outcome and Pathology of Highly Pathogenic Avian Influenza and Velogenic Newcastle Disease Viruses. Frontiers in Immunology, 2018, 9, 2025.	4.8	32
45	A Comprehensive Review on Equine Influenza Virus: Etiology, Epidemiology, Pathobiology, Advances in Developing Diagnostics, Vaccines, and Control Strategies. Frontiers in Microbiology, 2018, 9, 1941.	3.5	39
46	The E2 glycoprotein is necessary but not sufficient for the adaptation of classical swine fever virus lapinized vaccine C-strain to the rabbit. Virology, 2018, 519, 197-206.	2.4	10
47	Supplementation of Vitamin E Protects Chickens from Newcastle Disease Virus-Mediated Exacerbation of Intestinal Oxidative Stress and Tissue Damage. Cellular Physiology and Biochemistry, 2018, 47, 1655-1666.	1.6	28
48	Comparative evolutionary and phylogenomic analysis of Avian avulaviruses 1–20. Molecular Phylogenetics and Evolution, 2018, 127, 931-951.	2.7	21
49	Biological characterization of wild-bird-origin avian avulavirus 1 and efficacy of currently applied vaccines against potential infection in commercial poultry. Archives of Virology, 2018, 163, 2743-2755.	2.1	12
50	Genetic characterization of small ruminant morbillivirus from recently emerging wave of outbreaks in Pakistan. Transboundary and Emerging Diseases, 2018, 65, 2032-2038.	3.0	7
51	Potential of genotype VII Newcastle disease viruses to cause differential infections in chickens and ducks. Transboundary and Emerging Diseases, 2018, 65, 1851-1862.	3.0	19
52	RINC-Domain E3 Ligase-Mediated Host–Virus Interactions: Orchestrating Immune Responses by the Host and Antagonizing Immune Defense by Viruses. Frontiers in Immunology, 2018, 9, 1083.	4.8	42
53	The Application of NHEJ-CRISPR/Cas9 and Cre-Lox System in the Generation of Bivalent Duck Enteritis Virus Vaccine against Avian Influenza Virus. Viruses, 2018, 10, 81.	3.3	21
54	Vitamin E Supplementation Ameliorates Newcastle Disease Virus-Induced Oxidative Stress and Alleviates Tissue Damage in the Brains of Chickens. Viruses, 2018, 10, 173.	3.3	19

MUHAMMAD MUNIR

#	Article	IF	CITATIONS
55	Phylogenomics and Infectious Potential of Avian Avulaviruses Species-Type 1 Isolated from Healthy Green-Winged Teal (Anas carolinensis) from a Wetland Sanctuary of Indus River. Avian Diseases, 2018, 62, 404.	1.0	8
56	Reverse spillover of avian viral vaccine strains from domesticated poultry to wild birds. Vaccine, 2017, 35, 3523-3527.	3.8	24
57	Chicken IFN Kappa: A Novel Cytokine with Antiviral Activities. Scientific Reports, 2017, 7, 2719.	3.3	29
58	Evolutionary insights into the fusion protein of Newcastle disease virus isolated from vaccinated chickens in 2016 in Egypt. Archives of Virology, 2017, 162, 3069-3079.	2.1	26
59	Avian Interferons and Their Antiviral Effectors. Frontiers in Immunology, 2017, 8, 49.	4.8	126
60	Evaluation of Risk Factors for Peste des Petits Ruminants Virus in Sheep and Goats at the Wildlife-Livestock Interface in Punjab Province, Pakistan. BioMed Research International, 2016, 2016, 1-6.	1.9	23
61	Detection of Inter-Lineage Natural Recombination in Avian Paramyxovirus Serotype 1 Using Simplified Deep Sequencing Platform. Frontiers in Microbiology, 2016, 7, 1907.	3.5	24
62	Molecular characterization of infectious bursal disease viruses from Pakistan. Archives of Virology, 2016, 161, 2001-2006.	2.1	8
63	Mitogen-Activated Protein Kinase Kinase 2, a Novel E2-Interacting Protein, Promotes the Growth of Classical Swine Fever Virus via Attenuation of the JAK-STAT Signaling Pathway. Journal of Virology, 2016, 90, 10271-10283.	3.4	23
64	Guanylate-Binding Protein 1, an Interferon-Induced GTPase, Exerts an Antiviral Activity against Classical Swine Fever Virus Depending on Its GTPase Activity. Journal of Virology, 2016, 90, 4412-4426.	3.4	68
65	Infectivity of wild bird-origin avian paramyxovirus serotype 1 and vaccine effectiveness in chickens. Journal of General Virology, 2016, 97, 3161-3173.	2.9	13
66	Induction of innate immunity and its perturbation by influenza viruses. Protein and Cell, 2015, 6, 712-721.	11.0	36
67	Isolation of buffalo poxvirus from clinical case and variations in the genetics of the B5R gene over fifty passages. Virus Genes, 2015, 51, 45-50.	1.6	4
68	Estimation of Evolutionary Dynamics and Selection Pressure in Coronaviruses. Methods in Molecular Biology, 2015, 1282, 41-48.	0.9	4
69	Biological and genotypic characterization of the Newcastle disease virus isolated from disease outbreaks in commercial poultry farms in northern Punjab, Pakistan. Virology Reports, 2014, 3-4, 30-39.	0.4	7
70	Complete Genome Sequences of Lineage III Peste des Petits Ruminants Viruses from the Middle East and East Africa. Genome Announcements, 2014, 2, .	0.8	34
71	Molecular Evolution of Peste des Petits Ruminants Virus. Emerging Infectious Diseases, 2014, 20, 2023-2033.	4.3	78
72	Genetic diversity of Newcastle disease virus in Pakistan: a countrywide perspective. Virology Journal, 2013, 10, 170.	3.4	45

#	Article	IF	CITATIONS
73	Isolation and characterization of low pathogenic H9N2 avian influenza A viruses from a healthy flock and its comparison to other H9N2 isolates. Indian Journal of Virology: an Official Organ of Indian Virological Society, 2013, 24, 342-348.	0.7	5
74	Evolutionary dynamics of bovine coronaviruses: natural selection pattern of the spike gene implies adaptive evolution of the strains. Journal of General Virology, 2013, 94, 2036-2049.	2.9	50
75	Genetic analysis of peste des petits ruminants virus from Pakistan. BMC Veterinary Research, 2013, 9, 60.	1.9	17
76	Molecular Biology and Pathogenesis of Peste des Petits Ruminants Virus. Springer Briefs in Animal Sciences, 2013, , .	0.1	24
77	Genetic analysis of Newcastle disease virus from Punjab, Pakistan. Virus Genes, 2013, 46, 309-315.	1.6	19
78	Current Advances in Molecular Diagnosis and Vaccines for Peste des Petits Ruminants. , 2013, , 105-133.		2
79	Bioinformatics analysis of large-scale viral sequences. Virulence, 2013, 4, 97-106.	4.4	4
80	The multiple faces of proteinkinase R in antiviral defense. Virulence, 2013, 4, 85-89.	4.4	78
81	Epidemiology and Distribution of Peste des Petits Ruminants. , 2013, , 69-104.		2
82	Hemoglobin Subunit Beta Interacts with the Capsid Protein and Antagonizes the Growth of Classical Swine Fever Virus. Journal of Virology, 2013, 87, 5707-5717.	3.4	40
83	The non-structural (NS) gene segment of H9N2 influenza virus isolated from backyard poultry in Pakistan reveals strong genetic and functional similarities to the NS gene of highly pathogenic H5N1. Virulence, 2013, 4, 612-623.	4.4	12
84	The X proteins of bornaviruses interfere with type I interferon signalling. Journal of General Virology, 2013, 94, 263-269.	2.9	16
85	Establishment of Stably Transfected Cells Constitutively Expressing the Full-Length and Truncated Antigenic Proteins of Two Genetically Distinct Mink Astroviruses. PLoS ONE, 2013, 8, e82978.	2.5	6
86	Replication and Virulence Determinants of Peste des Petits Ruminants Virus. Springer Briefs in Animal Sciences, 2013, , 23-32.	0.1	4
87	Complete Genome Sequencing of a Velogenic Viscerotropic Avian Paramyxovirus 1 Isolated from Pheasants (Pucrasia macrolopha) in Lahore, Pakistan. Journal of Virology, 2012, 86, 13828-13829.	3.4	24
88	Complete Genome Sequence of a Velogenic Neurotropic Avian Paramyxovirus 1 Isolated from Peacocks (Pavo cristatus) in a Wildlife Park in Pakistan. Journal of Virology, 2012, 86, 13113-13114.	3.4	24
89	Double-Stranded RNA-Induced Activation of Activating Protein-1 Promoter Is Differentially Regulated by the Non-structural Protein 1 of Avian Influenza A Viruses. Viral Immunology, 2012, 25, 79-85.	1.3	6
90	Sequencing and analysis of the complete genome of Newcastle disease virus isolated from a commercial poultry farm in 2010. Archives of Virology, 2012, 157, 765-768.	2.1	26

MUHAMMAD MUNIR

#	Article	IF	CITATIONS
91	Biological characterization and phylogenetic analysis of a novel genetic group of Newcastle disease virus isolated from outbreaks in commercial poultry and from backyard poultry flocks in Pakistan. Infection, Genetics and Evolution, 2012, 12, 1010-1019.	2.3	70
92	Genetic data from avian influenza and avian paramyxoviruses generated by the European network of excellence (EPIZONE) between 2006 and 2011—Review and recommendations for surveillance. Veterinary Microbiology, 2012, 154, 209-221.	1.9	11
93	Genomic and biological characterization of a velogenic Newcastle disease virus isolated from a healthy backyard poultry flock in 2010. Virology Journal, 2012, 9, 46.	3.4	51
94	Genetic Characterization of Peste des Petits Ruminants Virus, Sierra Leone. Emerging Infectious Diseases, 2012, 18, 193-195.	4.3	33
95	Whole genome sequencing and characterization of a virulent Newcastle disease virus isolated from an outbreak in Sweden. Virus Genes, 2011, 43, 261-271.	1.6	22
96	Non-structural protein 1 of avian influenza A viruses differentially inhibit NF-κB promoter activation. Virology Journal, 2011, 8, 383.	3.4	15
97	Alleles A and B of non-structural protein 1 of avian influenza A viruses differentially inhibit beta interferon production in human and mink lung cells. Journal of General Virology, 2011, 92, 2111-2121.	2.9	19
98	Complete genome characterisation of a Newcastle disease virus isolated during an outbreak in Sweden in 1997. Virus Genes, 2010, 41, 165-173.	1.6	29
99	Differences in the ability to suppress interferon β production between allele A and allele B NS1 proteins from H10 influenza A viruses. Virology Journal, 2010, 7, 376.	3.4	17
100	Complete Genome Analysis of an Avian Paramyxovirus Type 1 Strain Isolated in 1994 from an Asymptomatic Black-Headed Gull (Larus ridibundus) in Southern Sweden. Avian Diseases, 2010, 54, 923-930.	1.0	23
101	TRIM Proteins: Another Class of Viral Victims. Science Signaling, 2010, 3, jc2.	3.6	62