Theodora Hatziioannou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6170729/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasma Neutralization of the SARS-CoV-2 Omicron Variant. New England Journal of Medicine, 2022, 386, 599-601.	27.0	371
2	Analysis of memory B cells identifies conserved neutralizing epitopes on the N-terminal domain of variant SARS-Cov-2 spike proteins. Immunity, 2022, 55, 998-1012.e8.	14.3	86
3	Increased memory B cell potency and breadth after a SARS-CoV-2 mRNA boost. Nature, 2022, 607, 128-134.	27.8	197
4	Severe Acute Respiratory Syndrome Coronavirus 2 Neutralization After Messenger RNA Vaccination and Variant Breakthrough Infection. Open Forum Infectious Diseases, 2022, 9, .	0.9	5
5	Longitudinal variation in SARS-CoV-2 antibody levels and emergence of viral variants: a serological analysis. Lancet Microbe, The, 2022, 3, e493-e502.	7.3	22
6	Antibody and Memory B-Cell Immunity in a Heterogeneously SARS-CoV-2-Infected and -Vaccinated Population. MBio, 2022, 13, .	4.1	9
7	Antibody evolution to SARS-CoV-2 after single-dose Ad26.COV2.S vaccine in humans. Journal of Experimental Medicine, 2022, 219, .	8.5	10
8	Plasma and memory antibody responses to Gamma SARS-CoV-2 provide limited cross-protection to other variants. Journal of Experimental Medicine, 2022, 219, .	8.5	6
9	Absence of Severe Acute Respiratory Syndrome Coronavirus 2 Neutralizing Activity in Prepandemic Sera From Individuals With Recent Seasonal Coronavirus Infection. Clinical Infectious Diseases, 2021, 73, e1208-e1211.	5.8	65
10	Longitudinal Serological Analysis and Neutralizing Antibody Levels in Coronavirus Disease 2019 Convalescent Patients. Journal of Infectious Diseases, 2021, 223, 389-398.	4.0	233
11	Enhanced SARS-CoV-2 neutralization by dimeric IgA. Science Translational Medicine, 2021, 13, .	12.4	379
12	Evolution of antibody immunity to SARS-CoV-2. Nature, 2021, 591, 639-644.	27.8	1,355
13	mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature, 2021, 592, 616-622.	27.8	1,232
14	Bispecific IgG neutralizes SARS-CoV-2 variants and prevents escape in mice. Nature, 2021, 593, 424-428.	27.8	108
15	Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature, 2021, 595, 426-431.	27.8	610
16	Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Nature, 2021, 595, 278-282.	27.8	154
17	Vaccine Breakthrough Infections with SARS-CoV-2 Variants. New England Journal of Medicine, 2021, 384, 2212-2218.	27.0	647
18	Early treatment with a combination of two potent neutralizing antibodies improves clinical outcomes and reduces virus replication and lung inflammation in SARS-CoV-2 infected macaques. PLoS Pathogens, 2021, 17, e1009688.	4.7	16

Theodora Hatziioannou

#	Article	IF	CITATIONS
19	Mapping mutations to the SARS-CoV-2 RBD that escape binding by different classes of antibodies. Nature Communications, 2021, 12, 4196.	12.8	332
20	Affinity maturation of SARS-CoV-2 neutralizing antibodies confers potency, breadth, and resilience to viral escape mutations. Immunity, 2021, 54, 1853-1868.e7.	14.3	230
21	Broad cross-reactivity across sarbecoviruses exhibited by a subset of COVID-19 donor-derived neutralizing antibodies. Cell Reports, 2021, 36, 109760.	6.4	80
22	Comparison of SARS-CoV-2 serological assays for use in epidemiological surveillance in Scotland. Journal of Clinical Virology Plus, 2021, 1, 100028.	1.0	2
23	High genetic barrier to SARS-CoV-2 polyclonal neutralizing antibody escape. Nature, 2021, 600, 512-516.	27.8	174
24	Convalescent plasma-mediated resolution of COVID-19 in a patient with humoral immunodeficiency. Cell Reports Medicine, 2021, 2, 100164.	6.5	26
25	Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo. Journal of Experimental Medicine, 2021, 218, .	8.5	283
26	Anti-SARS-CoV-2 receptor-binding domain antibody evolution after mRNA vaccination. Nature, 2021, 600, 517-522.	27.8	239
27	Replication and single-cycle delivery of SARS-CoV-2 replicons. Science, 2021, 374, 1099-1106.	12.6	49
28	Low-dose in vivo protection and neutralization across SARS-CoV-2 variants by monoclonal antibody combinations. Nature Immunology, 2021, 22, 1503-1514.	14.5	40
29	Highly synergistic combinations of nanobodies that target SARS-CoV-2 and are resistant to escape. ELife, 2021, 10, .	6.0	36
30	Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature, 2020, 584, 437-442.	27.8	1,742
31	Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. Journal of Experimental Medicine, 2020, 217, .	8.5	503
32	Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies. Cell, 2020, 182, 828-842.e16.	28.9	724
33	Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. ELife, 2020, 9, .	6.0	1,239
34	Flexibility in Nucleic Acid Binding Is Central to APOBEC3H Antiviral Activity. Journal of Virology, 2019, 93, .	3.4	8
35	Derivation of simian tropic HIV-1 infectious clone reveals virus adaptation to a new host. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10504-10509.	7.1	14
36	Rational design and in vivo selection of SHIVs encoding transmitted/founder subtype C HIV-1 envelopes. PLoS Pathogens, 2019, 15, e1007632.	4.7	20

#	Article	IF	CITATIONS
37	Rhabdo-immunodeficiency virus, a murine model of acute HIV-1 infection. ELife, 2019, 8, .	6.0	6
38	A single gp120 residue can affect HIV-1 tropism in macaques. PLoS Pathogens, 2017, 13, e1006572.	4.7	28
39	Envelope residue 375 substitutions in simian–human immunodeficiency viruses enhance CD4 binding and replication in rhesus macaques. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3413-22.	7.1	170
40	Selection of Unadapted, Pathogenic SHIVs Encoding Newly Transmitted HIV-1 Envelope Proteins. Cell Host and Microbe, 2014, 16, 412-418.	11.0	47
41	HIV-1–induced AIDS in monkeys. Science, 2014, 344, 1401-1405.	12.6	76
42	MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature, 2013, 502, 563-566.	27.8	445
43	Assisted Evolution Enables HIV-1 to Overcome a High TRIM5α-Imposed Genetic Barrier to Rhesus Macaque Tropism. PLoS Pathogens, 2013, 9, e1003667.	4.7	32
44	Animal models for HIV/AIDS research. Nature Reviews Microbiology, 2012, 10, 852-867.	28.6	274
45	A macaque model of HIV-1 infection. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4425-4429.	7.1	150
46	Tetherin-Driven Adaptation of Vpu and Nef Function and the Evolution of Pandemic and Nonpandemic HIV-1 Strains. Cell Host and Microbe, 2009, 6, 409-421.	11.0	391
47	Independent genesis of chimeric TRIM5-cyclophilin proteins in two primate species. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3563-3568.	7.1	183
48	Generation of Simian-Tropic HIV-1 by Restriction Factor Evasion. Science, 2006, 314, 95-95.	12.6	140