
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6170569/publications.pdf Version: 2024-02-01

MARTAL DEDIECO

#	Article	IF	CITATIONS
1	Identification of Amino Acid Residues Required for Inhibition of Host Gene Expression by Influenza Virus A/Viet Nam/1203/2004 H5N1 PA-X. Journal of Virology, 2022, 96, JVI0040821.	1.5	7
2	Generation and Characterization of Single-Cycle Infectious A (sciCIV) and Its Use as Vaccine Platform. Methods in Molecular Biology, 2022, 2465, 227-255.	0.4	0
3	Immunity to Influenza Infection in Humans. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a038729.	2.9	8
4	Replication-Competent ΔNS1 Influenza A Viruses Expressing Reporter Genes. Viruses, 2021, 13, 698.	1.5	2
5	Amino Acid Residues Involved in Inhibition of Host Gene Expression by Influenza A/Brevig Mission/1/1918 PA-X. Microorganisms, 2021, 9, 1109.	1.6	4
6	Natural Selection of H5N1 Avian Influenza A Viruses with Increased PA-X and NS1 Shutoff Activity. Viruses, 2021, 13, 1760.	1.5	10
7	Epigenetic targeting of the ACE2 and NRP1 viral receptors limits SARS-CoV-2 infectivity. Clinical Epigenetics, 2021, 13, 187.	1.8	22
8	Influenza Virus and Vaccination. Pathogens, 2020, 9, 220.	1.2	5
9	AGL2017-82570-RReverse genetics approaches for the development of new vaccines against influenza A virus infections. Current Opinion in Virology, 2020, 44, 26-34.	2.6	7
10	Characterizing Emerging Canine H3 Influenza Viruses. PLoS Pathogens, 2020, 16, e1008409.	2.1	29
11	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
12	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
13	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		Ο
14	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
15	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		Ο
16	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
17	A Novel Vaccine Strategy to Overcome Poor Immunogenicity of Avian Influenza Vaccines through Mobilization of Memory CD4 T Cells Established by Seasonal Influenza. Journal of Immunology, 2019, 203, 1502-1508.	0.4	15
18	Interferon-Induced Protein 44 Interacts with Cellular FK506-Binding Protein 5, Negatively Regulates Host Antiviral Responses, and Supports Virus Replication. MBio, 2019, 10, .	1.8	88

#	Article	IF	CITATIONS
19	Novel Functions of IFI44L as a Feedback Regulator of Host Antiviral Responses. Journal of Virology, 2019, 93, .	1.5	66
20	Host Single Nucleotide Polymorphisms Modulating Influenza A Virus Disease in Humans. Pathogens, 2019, 8, 168.	1.2	28
21	A Novel Fluorescent and Bioluminescent Bireporter Influenza A Virus To Evaluate Viral Infections. Journal of Virology, 2019, 93, .	1.5	43
22	Broad Hemagglutinin-Specific Memory B Cell Expansion by Seasonal Influenza Virus Infection Reflects Early-Life Imprinting and Adaptation to the Infecting Virus. Journal of Virology, 2019, 93, .	1.5	50
23	Functional Characterization and Direct Comparison of Influenza A, B, C, and D NS1 Proteins in vitro and in vivo. Frontiers in Microbiology, 2019, 10, 2862.	1.5	27
24	Modulation of Innate Immune Responses by the Influenza A NS1 and PA-X Proteins. Viruses, 2018, 10, 708.	1.5	66
25	Directed selection of amino acid changes in the influenza hemagglutinin and neuraminidase affecting protein antigenicity. Vaccine, 2018, 36, 6383-6392.	1.7	5
26	Role of Severe Acute Respiratory Syndrome Coronavirus Viroporins E, 3a, and 8a in Replication and Pathogenesis. MBio, 2018, 9, .	1.8	248
27	Crowd on a Chip: Label-Free Human Monoclonal Antibody Arrays for Serotyping Influenza. Analytical Chemistry, 2018, 90, 9583-9590.	3.2	19
28	Functional Evolution of the 2009 Pandemic H1N1 Influenza Virus NS1 and PA in Humans. Journal of Virology, 2018, 92, .	1.5	42
29	NS1 Protein Amino Acid Changes D189N and V194I Affect Interferon Responses, Thermosensitivity, and Virulence of Circulating H3N2 Human Influenza A Viruses. Journal of Virology, 2017, 91, .	1.5	43
30	The K186E Amino Acid Substitution in the Canine Influenza Virus H3N8 NS1 Protein Restores Its Ability To Inhibit Host Gene Expression. Journal of Virology, 2017, 91, .	1.5	25
31	Natural and directed antigenic drift of the H1 influenza virus hemagglutinin stalk domain. Scientific Reports, 2017, 7, 14614.	1.6	54
32	Interplay of PA-X and NS1 Proteins in Replication and Pathogenesis of a Temperature-Sensitive 2009 Pandemic H1N1 Influenza A Virus. Journal of Virology, 2017, 91, .	1.5	48
33	Functional Evolution of Influenza Virus NS1 Protein in Currently Circulating Human 2009 Pandemic H1N1 Viruses. Journal of Virology, 2017, 91, .	1.5	51
34	Canine influenza viruses with modified NS1 proteins for the development of live-attenuated vaccines. Virology, 2017, 500, 1-10.	1.1	28
35	Antigenicity of the 2015–2016 seasonal H1N1 human influenza virus HA and NA proteins. PLoS ONE, 2017, 12, e0188267.	1.1	46
36	Boolean Modeling of Cellular and Molecular Pathways Involved in Influenza Infection. Computational and Mathematical Methods in Medicine, 2016, 2016, 1-11.	0.7	10

#	Article	IF	CITATIONS
37	Rearrangement of Influenza Virus Spliced Segments for the Development of Live-Attenuated Vaccines. Journal of Virology, 2016, 90, 6291-6302.	1.5	44
38	NS1 Protein Mutation I64T Affects Interferon Responses and Virulence of Circulating H3N2 Human Influenza A Viruses. Journal of Virology, 2016, 90, 9693-9711.	1.5	34
39	Directed selection of influenza virus produces antigenic variants that match circulating human virus isolates and escape from vaccineâ€mediated immune protection. Immunology, 2016, 148, 160-173.	2.0	29
40	Novel Sequence-Based Mapping of Recently Emerging H5NX Influenza Viruses Reveals Pandemic Vaccine Candidates. PLoS ONE, 2016, 11, e0160510.	1.1	10
41	Examining the Effects of External or Internal Radiation Exposure of Juvenile Mice on Late Morbidity after Infection with Influenza A. Radiation Research, 2015, 184, 3-13.	0.7	12
42	Severe Acute Respiratory Syndrome Coronaviruses with Mutations in the E Protein Are Attenuated and Promising Vaccine Candidates. Journal of Virology, 2015, 89, 3870-3887.	1.5	118
43	Identification of the Mechanisms Causing Reversion to Virulence in an Attenuated SARS-CoV for the Design of a Genetically Stable Vaccine. PLoS Pathogens, 2015, 11, e1005215.	2.1	137
44	The PDZ-Binding Motif of Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Is a Determinant of Viral Pathogenesis. PLoS Pathogens, 2014, 10, e1004320.	2.1	201
45	Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Ion Channel Activity Promotes Virus Fitness and Pathogenesis. PLoS Pathogens, 2014, 10, e1004077.	2.1	440
46	Inhibition of NF-κB-Mediated Inflammation in Severe Acute Respiratory Syndrome Coronavirus-Infected Mice Increases Survival. Journal of Virology, 2014, 88, 913-924.	1.5	344
47	Coronavirus virulence genes with main focus on SARS-CoV envelope gene. Virus Research, 2014, 194, 124-137.	1.1	140
48	The replication of a mouse adapted SARS-CoV in a mouse cell line stably expressing the murine SARS-CoV receptor mACE2 efficiently induces the expression of proinflammatory cytokines. Journal of Virological Methods, 2013, 193, 639-646.	1.0	15
49	Analysis of SARS-CoV E protein ion channel activity by tuning the protein and lipid charge. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2026-2031.	1.4	82
50	Ion Channels Formed by SARS Coronavirus Envelope Protein: Lipid Regulation of Conductance and Selectivity. Biophysical Journal, 2013, 104, 632a.	0.2	1
51	Complete Protection against Severe Acute Respiratory Syndrome Coronavirus-Mediated Lethal Respiratory Disease in Aged Mice by Immunization with a Mouse-Adapted Virus Lacking E Protein. Journal of Virology, 2013, 87, 6551-6559.	1.5	108
52	Engineering a Replication-Competent, Propagation-Defective Middle East Respiratory Syndrome Coronavirus as a Vaccine Candidate. MBio, 2013, 4, e00650-13.	1.8	236
53	Severe Acute Respiratory Syndrome Coronavirus Replication Inhibitor That Interferes with the Nucleic Acid Unwinding of the Viral Helicase. Antimicrobial Agents and Chemotherapy, 2012, 56, 4718-4728.	1.4	105
54	Severe Acute Respiratory Syndrome Coronavirus nsp1 Facilitates Efficient Propagation in Cells through a Specific Translational Shutoff of Host mRNA. Journal of Virology, 2012, 86, 11128-11137.	1.5	187

#	Article	IF	CITATIONS
55	Severe acute respiratory syndrome coronavirus accessory proteins 6 and 9b interact in vivo. Virus Research, 2012, 169, 282-288.	1.1	10
56	Coronavirus E protein forms ion channels with functionally and structurally-involved membrane lipids. Virology, 2012, 432, 485-494.	1.1	189
57	Combined action of type I and type III interferon restricts initial replication of severe acute respiratory syndrome coronavirus in the lung but fails to inhibit systemic virus spread. Journal of General Virology, 2012, 93, 2601-2605.	1.3	56
58	Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein. Virology, 2011, 415, 69-82.	1.1	211
59	Recombinant Live Vaccines to Protect Against the Severe Acute Respiratory Syndrome Coronavirus. , 2011, , 73-97.		5
60	Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Regulates Cell Stress Response and Apoptosis. PLoS Pathogens, 2011, 7, e1002315.	2.1	173
61	Immunization with an attenuated severe acute respiratory syndrome coronavirus deleted in E protein protects against lethal respiratory disease. Virology, 2010, 399, 120-128.	1.1	127
62	The envelope protein of severe acute respiratory syndrome coronavirus interacts with the non-structural protein 3 and is ubiquitinated. Virology, 2010, 402, 281-291.	1.1	51
63	Pathogenicity of severe acute respiratory coronavirus deletion mutants in hACE-2 transgenic mice. Virology, 2008, 376, 379-389.	1.1	146
64	Vaccines to prevent severe acute respiratory syndrome coronavirus-induced disease. Virus Research, 2008, 133, 45-62.	1.1	106
65	Gene expression, virulence and vaccine development in coronaviruses. Journal of Biotechnology, 2008, 136, S212-S213.	1.9	0
66	A Live Attenuated Severe Acute Respiratory Syndrome Coronavirus Is Immunogenic and Efficacious in Golden Syrian Hamsters. Journal of Virology, 2008, 82, 7721-7724.	1.5	112
67	Genome-Wide Analysis of Protein-Protein Interactions and Involvement of Viral Proteins in SARS-CoV Replication. PLoS ONE, 2008, 3, e3299.	1.1	126
68	A Severe Acute Respiratory Syndrome Coronavirus That Lacks the E Gene Is Attenuated In Vitro and In Vivo. Journal of Virology, 2007, 81, 1701-1713.	1.5	354
69	Construction of a Severe Acute Respiratory Syndrome Coronavirus Infectious cDNA Clone and a Replicon To Study Coronavirus RNA Synthesis. Journal of Virology, 2006, 80, 10900-10906.	1.5	198
70	Subcellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein. Journal of General Virology, 2005, 86, 3303-3310.	1.3	76
71	Vaccines for Severe Acute Respiratory Syndrome Virus and Other Coronaviruses. , 0, , 379-407.		3