Gugu H Mhlongo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6170265/publications.pdf

Version: 2024-02-01

218592 254106 49 1,859 26 citations h-index papers

43 g-index 49 49 49 2501 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ultra-high sensitive and selective H2 gas sensor manifested by interface of n–n heterostructure of CeO2-SnO2 nanoparticles. Sensors and Actuators B: Chemical, 2018, 254, 984-995.	4.0	175
2	Room temperature ferromagnetism and gas sensing in ZnO nanostructures: Influence of intrinsic defects and Mn, Co, Cu doping. Applied Surface Science, 2016, 390, 804-815.	3.1	121
3	Shape-Selective Dependence of Room Temperature Ferromagnetism Induced by Hierarchical ZnO Nanostructures. ACS Applied Materials & Samp; Interfaces, 2014, 6, 8981-8995.	4.0	117
4	Highly selective NH3 gas sensor based on Au loaded ZnO nanostructures prepared using microwave-assisted method. Journal of Colloid and Interface Science, 2016, 479, 127-138.	5.0	116
5	Fabrication of ultra-high sensitive and selective CH4 room temperature gas sensing of TiO2 nanorods: Detailed study on the annealing temperature. Sensors and Actuators B: Chemical, 2017, 238, 402-419.	4.0	88
6	A highly responsive NH3 sensor based on Pd-loaded ZnO nanoparticles prepared via a chemical precipitation approach. Scientific Reports, 2019, 9, 9881.	1.6	88
7	Temperature-dependence on the structural, optical, and paramagnetic properties of ZnO nanostructures. Applied Surface Science, 2014, 293, 62-70.	3.1	82
8	Structural, photoluminescence and XPS properties of Tm 3+ ions in ZnO nanostructures. Journal of Luminescence, 2017, 187, 141-153.	1.5	58
9	Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment. Sensors and Actuators B: Chemical, 2016, 224, 841-856.	4.0	56
10	Microstructural and photoluminescence properties of sol–gel derived Tb3+ doped ZnO nanocrystals. Journal of Alloys and Compounds, 2014, 591, 156-163.	2.8	53
11	Pd2+ doped ZnO nanostructures: Structural, luminescence and gas sensing properties. Materials Letters, 2015, 160, 200-205.	1.3	51
12	Ultra-sensitive and selective NH3 room temperature gas sensing induced by manganese-doped titanium dioxide nanoparticles. Journal of Colloid and Interface Science, 2017, 504, 371-386.	5.0	46
13	Correlating the magnetism and gas sensing properties of Mn-doped ZnO films enhanced by UV irradiation. RSC Advances, 2016, 6, 26227-26238.	1.7	45
14	OD to 3D ZnO nanostructures and their luminescence, magnetic and sensing properties: Influence of pH and annealing. Materials Research Bulletin, 2017, 85, 52-63.	2.7	44
15	Defect-induced magnetism in undoped and Mn-doped wide band gap zinc oxide grown by aerosol spray pyrolysis. Applied Surface Science, 2014, 311, 14-26.	3.1	43
16	Hierarchically Porous Cu-, Co-, and Mn-Doped Platelet-Like ZnO Nanostructures and Their Photocatalytic Performance for Indoor Air Quality Control. ACS Omega, 2019, 4, 16429-16440.	1.6	42
17	Luminescence Dependence of Pr ³⁺ Activated SiO ₂ Nanophosphor on Pr ³⁺ Concentration, Temperature, and ZnO Incorporation. Journal of Physical Chemistry C, 2011, 115, 17625-17632.	1.5	39
18	Tailoring the sensing properties of microwave-assisted grown ZnO nanorods: Effect of irradiation time on luminescence and magnetic behaviour. Journal of Alloys and Compounds, 2016, 657, 917-926.	2.8	39

#	Article	IF	CITATIONS
19	Structural and optical properties of ZnO nanostructures grown by aerosol spray pyrolysis: Candidates for room temperature methane and hydrogen gas sensing. Applied Surface Science, 2013, 279, 142-149.	3.1	35
20	Design of porous p-type LaCoO3 nanofibers with remarkable response and selectivity to ethanol at low operating temperature. Sensors and Actuators B: Chemical, 2020, 308, 127670.	4.0	35
21	Size-tunable ferromagnetic ZnFe2O4 nanoparticles and their ethanol detection capabilities. Applied Surface Science, 2020, 508, 144863.	3.1	35
22	Enhanced exciton emission from ZnO nano-phosphor induced by Yb3+ ions. Materials Letters, 2014, 119, 71-74.	1.3	33
23	Comparative study: the effect of annealing conditions on the properties of P3HT:PCBM blends. Journal of Materials Science, 2013, 48, 1763-1778.	1.7	32
24	Photoluminescence Quenching and Enhanced Optical Conductivity of P3HT-Derived Ho3+-Doped ZnO Nanostructures. Nanoscale Research Letters, 2016, 11, 418.	3.1	32
25	H2S detection capabilities with fibrous-like La-doped ZnO nanostructures: A comparative study on the combined effects of La-doping and post-annealing. Journal of Alloys and Compounds, 2019, 797, 284-301.	2.8	32
26	Life cycle assessment of facile microwave-assisted zinc oxide (ZnO) nanostructures. Science of the Total Environment, 2017, 586, 566-575.	3.9	28
27	Dependence of photoluminescence (PL) emission intensity on Eu3+ and ZnO concentrations in Y2O3:Eu3+ and ZnO·Y2O3:Eu3+ nanophosphors. Optical Materials, 2011, 33, 1495-1499.	1.7	24
28	Improved sensitivity and selectivity of pristine zinc oxide nanostructures to H2S gas: Detailed study on the synthesis reaction time. Applied Surface Science, 2016, 386, 210-223.	3.1	24
29	Analysis of the structure, particle morphology and photoluminescent properties of ZnS:Mn 2+ nanoparticulate phosphors. Optik, 2018, 153, 31-42.	1.4	24
30	Sol-gel preparation and characterization of Er3+ doped TiO2 luminescent nanoparticles. Materials Research Bulletin, 2018, 108, 234-241.	2.7	24
31	Ultrafast Detection of Low Acetone Concentration Displayed by Au-Loaded LaFeO ₃ Nanobelts owing to Synergetic Effects of Porous 1D Morphology and Catalytic Activity of Au Nanoparticles. ACS Omega, 2019, 4, 19018-19029.	1.6	24
32	A study on the sensing of NO2 and O2 utilizing ZnO films grown by aerosol spray pyrolysis. Materials Chemistry and Physics, 2015, 162, 628-639.	2.0	20
33	Optical and structural properties of nanostructured ZnO thin films deposited onto FTO/glass substrate by a solution-based technique. Optical Materials, 2013, 35, 2721-2727.	1.7	17
34	Au functionalized ZnO rose-like hierarchical structures and their enhanced NO 2 sensing performance. Physica B: Condensed Matter, 2018, 535, 216-220.	1.3	16
35	Evaluation of the effects of Au addition into ZnFe2O4 nanostructures on acetone detection capabilities. Materials Research Bulletin, 2021, 142, 111395.	2.7	15
36	Energy transfer between doubly doped Er3+, Tm3+and Ho3+ rare earth ions in SiO2 nanoparticles. Journal of Luminescence, 2011, 131, 790-794.	1.5	14

#	Article	IF	CITATIONS
37	Sensitizing effects of ZnO quantum dots on red-emitting Pr3+-doped SiO2 phosphor. Physica B: Condensed Matter, 2012, 407, 1607-1610.	1.3	12
38	Luminescent properties and quenching effects of Pr3+ co-doping in SiO2:Tb3+/Eu3+ nanophosphors. Optical Materials, 2014, 36, 732-739.	1.7	11
39	The influence of ZnO nanostructures on the structure, optical and photovoltaic properties of organic materials. Thin Solid Films, 2014, 555, 100-106.	0.8	11
40	Effects of Ce3+ concentration, beam voltage and current on the cathodoluminescence intensity of SiO2:Pr3+â€"Ce3+ nanophosphor. Journal of Alloys and Compounds, 2011, 509, 2986-2992.	2.8	10
41	LaBO3 (B= Fe, Co) nanofibers and their structural, luminescence and gas sensing characteristics. Physica B: Condensed Matter, 2020, 578, 411883.	1.3	9
42	A comprehensive comparison study on magnetic behaviour, defects-related emission and Ni substitution to clarify the origin of enhanced acetone detection capabilities. Sensors and Actuators B: Chemical, 2021, 339, 129860.	4.0	9
43	Photoluminescence studies of green emitting BaB8O13: Bi3+ phosphors prepared by solution combustion method. Journal of Luminescence, 2018, 200, 94-102.	1.5	8
44	Effects of accelerating beam voltage on luminescence of Er3+ and Tm3+ doped SiO2 phosphor prepared by sol–gel process. Optical Materials, 2010, 33, 79-83.	1.7	6
45	Cathodoluminescence properties of SiO2:Pr3+and ZnO·SiO2:Pr3+ phosphor nanopowders. Journal of Materials Science, 2010, 45, 5228-5236.	1.7	5
46	Enhanced Propanol Response Behavior of ZnFe2O4 NP-Based Active Sensing Layer Induced by Film Thickness Optimization. Processes, 2021, 9, 1791.	1.3	4
47	Concentration effect of Tm3+ on cathodoluminescence properties of SiO2:Tm3+ and SiO2:Ho3+,Tm3+ systems. Physica B: Condensed Matter, 2012, 407, 1582-1585.	1.3	3
48	Unveiling Semiconductor Nanostructured Based Holmium-Doped ZnO: Structural, Luminescent and Room Temperature Ferromagnetic Properties. Nanomaterials, 2021, 11, 2611.	1.9	3
49	Time-resolved fluorescence decay and Gaussian analysis of P3HT-derived \$\$hbox {Ho}^{3+}\$\$- and \$\$hbox {Tm}^{3+}\$\$-doped ZnO nanostructures. Bulletin of Materials Science, 2020, 43, 1.	0.8	1